
# **Automatización**

# Convertidores de Frecuencia





## Convertidores de Frecuencia



Los Convertidores de Frecuencia WEG son equipos destinados al control de velocidad de motores eléctricos de inducción trifásicos, para una amplia gama de aplicaciones industriales. Con tecnología de última generación y diseño moderno, los Convertidores de Frecuencia WEG permiten una fácil instalación/operación y se adaptan perfectamente a las necesidades de los accionamientos con una excelente relación coste beneficio.

Las familias de Convertidores de Frecuencia WEG han sido proyectadas con software de última generación lo que permite equipos optimizados y una excelente interactividad con el usuario a través de la HMI (Interfaz Hombre Máquina).

Además, lo Convertidores de Frecuencia WEG disponen de funciones y recursos especiales que permiten protección y control (velocidad, par o posición) de los motores eléctricos y proporcionan aumento de eficiencia / productividad de los sistemas.

Los Convertidores de Frecuencia WEG pueden operar con el método de control V/F control Vectorial.

## CFW-08

La línea de Convertidores de Frecuencia CFW-08 ha sido proyectada para reunir las más avanzadas características tecnológicas en un producto compacto y de fácil uso (instalación y operación).

Su interactividad con el usuario a través del HMI permite el control de procesos de las mayorías de las máquinas industriales. Además el CFW-08 ofrece la compensación del tiempo muerto que evita inestabilidad en el control del motor y posibilita el aumento del par en bajas velocidades.

## Caracteristicas Estándar

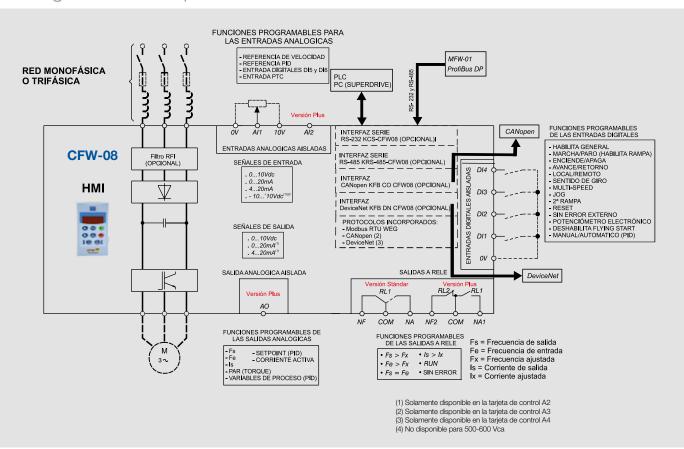
- Control DSP (Digital Signal Processor) que permite una excelente respuesta en el rendimiento del convertidor.
- Modulos IGBT's de última generación
- Tarjeta electrónicas con componentes SMD
- Modulación PWM Sinusoidal Space Vector Modulation
- Reducción considerable del ruido del motor
- Interfaz con Teclado de Membrana Táctil (IHM estándar y remota)
- Programación Flexible
- Dimensiones Compactas
- Instalación y Operación Simplificadas
- Alto Par de Arrangue
- Kit para instalación en electroducto

## **Aplicaciones**

- Bombas Centrífugas
- Bombas Dosificadoras de Proceso
- Ventiladores / Extractores de Aire
- Mezcladores
- Extrusoras
- Cintas Transportadoras
- Mesas de Rodillos
- Granuladoras / Paletizadoras
- Secadoras / Hornos Rotativos
- Filtros Rotativos
- Bobinadoras / Desbobinadoras
- Máquinas de Corte y Soldadura

## Certificaciones












## Diagrama de Bloques





## CFW-08 - Accesorios Opciones





Modelo Estándar con HMI -CFW08-P (Interfaz Hombre Máquina)



## Tapa ciega



Modelo Opcional sin HMI (Con tapa ciega)



## Modulo de Interfaz Serie RS-485



Kit opcional: Comunicación

RS-485 (KRS-485-CFW08)



## Modulo de Interfaz Serie RS-232 IHM Modulo de Interfaz Remoto



Kit opcional: Comunicación RS-232 (KCS-CFW08)

Kit opcional: Interfaz para HMI (MIS-CFW08-RS)



## **HMI Modulo de Interfaz Remoto Paralelo**



Kit opcional: Interfaz para HMI remoto paralelo (MIP-CFW08-RP)



## Base de Montaje en Riel DIN



Kit opcional: Base de fijación en riel DIN (KMD-CFW08-M1) (solamente tamaño 1)



#### Conexión en electroducto metálico



Kit opcional: Conexión en electroducto metálico (NEMA /IP21) KN1-CFW08-MX disponibles para tamaños 1 y 2.

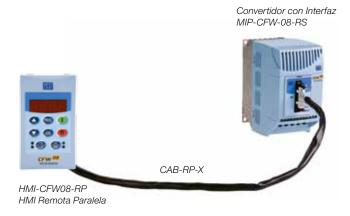


#### Modulo de Interfaz KAC-120



Kit opcional: Entradas Digitales en 120Vca

(KAC-120-CFW08)

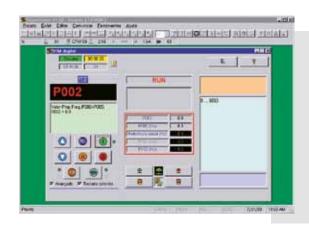





## CFW-08 - Interfaz Hombre-Maquina Remota

#### **HMI Remota Paralela**

Permite Accionar el CFW-08 en la puerta del armario (tablero) con una longitud máxima de 10 metros.




#### **HMI Remota Serie**

- Permite accionar el CFW-08 en la puerta del armario (tablero) con una longitud máxima de 150 metros (para distancias mayores de 10 metros es necesario una fuente externa 12Vcc/250mA;
- Permite la función "Copy".



## SuperDrive



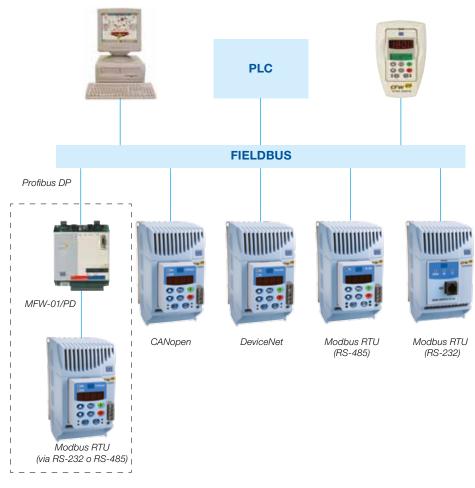
El SuperDrive es un software en entorno Windows que permite parametrizar, controlar y monitorear los convertidores de frecuencia WEG en un PC a través de la comunicación serie (RS-232 o RS-485). Además, permite hacer el "back-up" de los parámetros, documentación del proyecto y monitoreo "on-line" de los parámetros.

El software SuperDrive esta disponible para descarga, sin coste, en el sitio: www.weg.net. Los accesorios de hardware deben ser adquiridos a parte (son opcionales) de acuerdo con la familia de convertidores de frecuencia WEG.





## CFW-08 - Comunicaciones

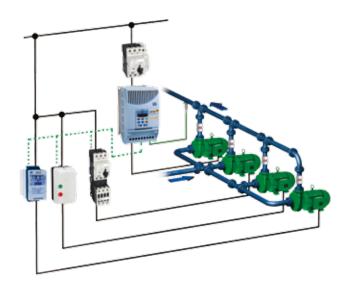

Los convertidores pueden operar con los más rápidos protocolos Fieldbus de la industria. Las opciones disponibles son:



Destinadas principalmente para integrar grandes automatizaciones de plantas industriales, las redes de comunicación rápidas ofrecen ventajas en el monitoreo y en el control "on-line" de Convertidores de Frecuencia proporcionando un elevado rendimiento y una gran flexibilidad operacional; son características exigidas en las aplicaciones de sistemas complejos y/o interconectados.

El CFW08 puede ser fácilmente conectado en estas redes con los siguientes kits fieldbus:

- Modbus-RTU: KCS-CFW08 (RS-232) o KRS-485-CFW08 (RS-485);
- Profibus DP: KCS-CFW08 o KRS-484-CFW08 conectado a un Gateway MFW-01 / PD para Profibus;
- CANopen: KFB-CO-CFW08 y a través de la tarjeta de control A3;
- DeviceNet: KFB-DN-CFW08 y a través de la tarjeta de control A4.
- (1) No disponible para 500-600V




## CFW-08 - Convertidor Multibomba

El convertidor CFW-08 Multibomba permite que los sistemas de bombeo mantengan la presión de la tubería constante; independiente de las variaciones del consumo.

Con capacidad para controlar hasta 4 (\*) bombas al mismo tiempo, otra función importante del CFW-08 Multibomba es el accionamiento inteligente de las bombas auxiliares que tiene en consideración el tiempo de operación del sistema. Además de controlar la presión de salida de las bombas, el convertidor también monitorea la presión de succión y el nivel del depósito de captación.

(\*) No disponible para la mecánica 1 del CFW-08



## Ventajas del uso del Control Multibomba

- Ahorro de energía
- Mayor vida útil de las bombas
- Mantiene la presión de línea constante
- Proporciona el caudal necesario de acuerdo con el consumo del sistema
- Arranques suaves, protegiendo la instalación mecánica y eléctrica
- Funcionamiento alterno de las bombas auxiliares de acuerdo con las horas trabajadas

## CFW-08 - Wash

La serie CFW-08 Wash posee una sólida carcasa que confiere al producto el grado de protección IP56 (NEMA 4x) y una extraordinária protección contra el povo y los chorros de agua.

De esta forma el convertidor CFW-08 Wash tiene la fiabilidad y robustez necesarid para ser empleado en ambientes de condiciones extremas: Industria Química, Petroquímica, Alimentaria y otras aplicaciones que requieren la total protección del equipo.

En ambientes agresivos y severos el convertidor CFW-08 Wash tendrá un funcionamiento duraderoo y sin fallos.





## CFW-08 - Datos Tecnicos

| 1odelo                                   |                                                                                                                                                                                                                                                                                               | CFW-08 Estándar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CFW-08 Plus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Tarrel                                   | Monofásica                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Trifásica                                |                                                                                                                                                                                                                                                                                               | 200-240Vca (+10% - 15%)<br>380-480Vca (+10% - 15%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Frec                                     | uencia                                                                                                                                                                                                                                                                                        | 50 / 60 Hz +/- 2 Hz ( 4862 Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| desliza                                  |                                                                                                                                                                                                                                                                                               | > 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Convertidor                              |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Upcional                                 |                                                                                                                                                                                                                                                                                               | NEMA 12 / IP54 HMI Remota Paralela (HMI – CFW08 – RP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| HMI                                      | Opcional                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Método                                   | de control                                                                                                                                                                                                                                                                                    | DSP (Digital Signal Processor), 16 bits, PWM sinusoidal (Space Vector Modulation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Tipos d                                  | e control                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Frecue                                   | encia de                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          | <del></del>                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| Control d                                | e velocidad                                                                                                                                                                                                                                                                                   | Ajuste: 1% de la velocidad nominal d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | con compensación de resbalamiento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Ana                                      | lógico                                                                                                                                                                                                                                                                                        | 1 Entrada Aislada 010Vcc, 0/420mA o -10+10Vcc<br>(AI1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 Entradas Aisladas 010Vcc, 0/420mA o -10+10Vcc<br>(Al1 y Al2) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| D:                                       | aital                                                                                                                                                                                                                                                                                         | 4 Entradas programables aisladas –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| DI                                       | yilai                                                                                                                                                                                                                                                                                         | 1 Entrada aislada para PTC vía Al1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 Entradas aisladas para PTC vía Al1 y Al2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| Relé (2)                                 |                                                                                                                                                                                                                                                                                               | 1 Salida programable, 1 contacto reversible (NU/NC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 salidas programables , 1 NO y 1 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               | Opciones de programación: ls > lx ; Fs :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               | 1 Salida Analógica aislada 010V, 0/420mA (8 bits)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               | Modibus-RTU, ProfiBus DP, DeviceNet, CANopen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Link CC Sobretensión / Subtensión        |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               | Sobretemperatura                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               | Sobrecorriente en la salida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Prote                                    | cciones                                                                                                                                                                                                                                                                                       | Sobrecarga en el motor ( i x t )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          | Error de Hardware, Defecto externo y Error de comunicación serie  Cortocircuito fase a fase y Cortocircuito fase-tierra en la salida                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               | Error de programación y error de autoajuste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               | Acciona / D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Desacciona |  |  |  |  |  |
| Ma                                       | ando                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               | JOG, Cambio del Sentido de Giro de Eje del Motor y Selección Local / Remoto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               | Frecuencia de salida al motor (Hz) Tensión del link CC ( V )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               | Valor proporcional a la frecuencia ( Ej.: RPM )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Supervision                              | ón (Lectura)                                                                                                                                                                                                                                                                                  | Temperatura del disipador                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| oupor viol                               | on (Lootara)                                                                                                                                                                                                                                                                                  | Corriente de salida al motor (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          | -                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               | Par de la carga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Temp                                     | eratura                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               | 01000m (3300ft); hasta 4000m (13100ft) con reducción de 1% / 1000m (3% / 1000ft) en la con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Electron                                 | nagnética                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               | LVD 73/23/EEC - Directiva de Baja Tensión / UL 508C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| ORMAS IEC 146 UL 508 C EN 50178 EN 61010 |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| UL (EE.l                                 | JU.) y cUL                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|                                          |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| CE (EUROPA) IRAM (ARGENTINA)             |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| IRAM (AI                                 | RGENTINA) I                                                                                                                                                                                                                                                                                   | Instituto Argentino                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | de Normalización                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                          | Tensión  Frecci Cos 0 (deslizz Convertidor  HMI  Tipo de al Método  Tipos d  Frecuenci Resolución Precisión (2 Capacidad c Rendi Control di  Ana  Di  Rel  Analó Interfa Redes  Proteci  Ma  Supervision  Temp Hun Alti Co Compa Electror Baja: IEC UL S EN S EN S EN S UL (EE.I. (CAI CE (EI | Tensión  Tensión  Trifásica  Frecuencia  Cos 0 (Factor de deslizamiento)  Convertidor  Convertidor  Tipo de alimentación  Método de control  Tipos de control  Frecuencia de Conmutación  Frecuencia de Salida  Resolución de frecuencia  Precisión (25°C ± 10°C)  Capacidad de Sobrecarga  Rendimiento  Control de velocidad  Analógico  Digital  Relé (2)  Analógico (2)  Interfaz Serie  Redes Fieldbus  Protecciones  Mando  Mando  Supervisión (Lectura)  Temperatura  Humedad  Altitud  Color  Compatibilidad Electromagnética  Baja tensión  IEC 146  UL 508 C  EN 50178  EN 61010  UL (EE.UU.) y CUL  (CANADA)  CE (EUROPA) | Tensión                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |

<sup>(1)</sup> Disponible solamente con la tarjeta de control A2; (2) En la tarjeta de control A5 (multibombas) existe 3 salidas a relé (NO) y ninguna salida analógica.

## CFW-08 - Tabla de Selección

La forma correcta para especificar un Convertidor de Frecuencia es seleccionar un equipo que pueda suministrar como mínimo la corriente nominal del motor. Las tablas siguientes indican las potencias de motores correspondientes a cada modelo de Convertidor de Frecuencia.

Los valores de las potencias de motores son solamente como referencia. Las corrientes nominales pueden variar según la velocidad y el fabricante. Las potencias de los motores IEC están basadas en motores WEG de 4 polos; las potencias de los motores NEMA están basadas en la tabla NEC 430-150.

> NEMA 60Hz 460V HP 0.33 0.75 1 2 2 3 7.5 10 15 20

#### Tensión del Motor 220Vca / 230Vca:

| Alimentación |       | Modelo         | Corriente<br>Salida |      |      |      |                |     |   |   |   |                |   |
|--------------|-------|----------------|---------------------|------|------|------|----------------|-----|---|---|---|----------------|---|
|              |       |                | Α                   |      |      |      |                |     |   |   |   |                |   |
|              |       | CFW080016S2024 | 1.6                 |      |      |      |                |     |   |   |   |                |   |
|              | 10    | CFW080026S2024 | 2.6                 |      |      |      |                |     |   |   |   |                |   |
|              |       | CFW080040S2024 | 4                   |      |      |      |                |     |   |   |   |                |   |
|              | 10/30 | CFW080016B2024 | 1.6                 |      |      |      |                |     |   |   |   |                |   |
|              |       | CFW080026B2024 | 2.6                 |      |      |      |                |     |   |   |   |                |   |
| 0            |       | 10/3           | 10/3                | 10/3 | 10/3 | 10/3 | 2              | 2   | 2 | 2 | 2 | CFW080040B2024 | 4 |
| 200-240 V    |       |                |                     |      |      |      | CFW080073B2024 | 7.3 |   |   |   |                |   |
| 8            |       | CFW080100B2024 | 10                  |      |      |      |                |     |   |   |   |                |   |
|              |       | CFW080070T2024 | 7                   |      |      |      |                |     |   |   |   |                |   |
|              |       | CFW080160T2024 | 16                  |      |      |      |                |     |   |   |   |                |   |
|              | 30    | CFW080220T2024 | 22                  |      |      |      |                |     |   |   |   |                |   |
|              |       | CFW080280T2024 | 28                  |      |      |      |                |     |   |   |   |                |   |
|              |       | CFW080330T2024 | 33                  |      |      |      |                |     |   |   |   |                |   |

| IE                   | IEC                  |              |  |  |  |  |
|----------------------|----------------------|--------------|--|--|--|--|
| 50Hz<br>220V<br>230V | 60Hz<br>220V<br>230V | 60Hz<br>230V |  |  |  |  |
| kW                   | HP                   | HP           |  |  |  |  |
| 0.25                 | 0.33                 | 0.25         |  |  |  |  |
| 0.55                 | 0.5                  | 0.5          |  |  |  |  |
| 0.75                 | 1                    | 0.75         |  |  |  |  |
| 0.25                 | 0.33                 | 0.25         |  |  |  |  |
| 0.55                 | 0.5                  | 0.5          |  |  |  |  |
| 0.75                 | 1                    | 0.75         |  |  |  |  |
| 1.5                  | 2                    | 2            |  |  |  |  |
| 2.2                  | 3                    | 3            |  |  |  |  |
| 1.5                  | 2                    | 2            |  |  |  |  |
| 4                    | 5                    | 5            |  |  |  |  |
| 5.5                  | 7.5                  | 7.5          |  |  |  |  |
| 7.5                  | 10                   | 10           |  |  |  |  |
| 9.2                  | 12.5                 | 10           |  |  |  |  |

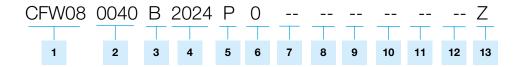
## Tensión del Motor 380Vca / 460Vca:

|              |      |                |                     | IE                   | C                    |
|--------------|------|----------------|---------------------|----------------------|----------------------|
| Alimentación |      | Modelo         | Corriente<br>Salida | 50Hz<br>380V<br>415V | 60Hz<br>440V<br>460V |
|              |      |                | kW                  | HP                   |                      |
|              |      | CFW080010T3848 | 1                   | 0.25                 | 0.33                 |
|              |      | CFW080016T3848 | 1.6                 | 0.55                 | 1                    |
|              |      | CFW080026T3848 | 2.6                 | 1.1                  | 1.5                  |
|              |      | CFW080027T3848 | 2.7                 | 1.1                  | 1.5                  |
| >            |      | CFW080040T3848 | 4                   | 1.5                  | 2                    |
| 084          | 30   | CFW080043T3848 | 4.3                 | 1.5                  | 2                    |
| 380-480 V    | , co | CFW080065T3848 | 6.5                 | 2.2                  | 4                    |
| 88           |      | CFW080100T3848 | 10                  | 4                    | 7.5                  |
|              |      | CFW080130T3848 | 13                  | 5.5                  | 10                   |
|              |      | CFW080160T3848 | 16                  | 7.5                  | 10                   |
|              |      | CFW080240T3848 | 24                  | 11                   | 15                   |
|              |      | CFW080300T3848 | 30                  | 15                   | 20                   |

## Tensión del Motor 525Vca / 575Vca:

| Alimentación |     | Modelo         | Corriente<br>Salida |   |
|--------------|-----|----------------|---------------------|---|
|              |     |                | Α                   |   |
|              |     | CFW080017T5060 | 1.7                 |   |
| >            | >   | CFW080030T5060 | 3                   |   |
| 000          | 30  | CFW080043T5060 | 4.3                 |   |
| 200-600 V    | , w | <u> </u>       | CFW080070T5060      | 7 |
| 2(           |     | CFW080100T5060 | 10                  |   |
|              |     | CFW080120T5060 | 12                  |   |

| IEC          | NEMA         |
|--------------|--------------|
| 50Hz<br>525V | 60Hz<br>575V |
| kW           | HP           |
| 0.75         | 1            |
| 1.5          | 2            |
| 2.2          | 3            |
| 4            | 5            |
| 5.5          | 7.5          |
| 7.5          | 10           |




## CFW-08 - Tabla de Selección

|                |        | ı             | NEMA 1 / IP2           | 0             |              | NEMA 4X / IP56 |                |                        |               |               |                          |
|----------------|--------|---------------|------------------------|---------------|--------------|----------------|----------------|------------------------|---------------|---------------|--------------------------|
| Modelo         | Tamaño |               | Dimensiones<br>mm (in) | ;             | Peso         | Tamaño         |                | Dimensiones<br>mm (in) | ;             | Peso          | Transistor de<br>Frenado |
|                |        | Alto          | Ancho                  | Prof.         | kg (lb)      |                | Alto           | Ancho                  | Prof.         | kg (lb)       | Frenauo                  |
| CFW080016S2024 |        |               |                        |               |              |                |                |                        |               |               |                          |
| CFW080016B2024 |        |               |                        |               |              |                |                |                        |               |               |                          |
| CFW080026S2024 |        |               |                        |               |              |                |                |                        |               |               |                          |
| CFW080026B2024 | 1      | 75<br>(2.95)  | 151<br>(5.95)          | 131<br>(5.16) | (2.2)        | -              | -              | -                      | -             | -             | No                       |
| CFW080040S2024 |        | (=:==)        | (5155)                 | (5115)        | (=:=)        |                |                |                        |               |               |                          |
| CFW080040B2024 |        |               |                        |               |              |                |                |                        |               |               |                          |
| CFW080070T2024 |        |               |                        |               |              |                |                |                        |               |               |                          |
| CFW080073B2024 |        |               |                        |               |              |                |                |                        |               |               |                          |
| CFW080100B2024 | 2      | 115<br>(4.53) | 200<br>(7.87)          | 150<br>(5.91) | (4.4)        | Α              | 265<br>(10.43) | 165<br>(6.50)          | 216<br>(8.50) | 5.3<br>(11.7) |                          |
| CFW080160T2024 |        | (1122)        | (****)                 | (5151)        | (,           |                | (13115)        | (5155)                 | (5.5.5)       | (****)        |                          |
| CFW080220T2024 | 3      | 143<br>(5.63) | 203<br>(7.99)          | 165<br>(6.50) | 2.5<br>(5.5) |                | 340            | 215                    | 216           | 7.9           | Sí                       |
| CFW080280T2024 | 4      | 182           | 290                    | 196           | 6            | В              | (13.39)        | (8.46)                 | (8.50)        | (17.4)        |                          |
| CFW080330T2024 | 4      | (7.16)        | (11.41)                | (7.71)        | (13.2)       |                |                |                        |               |               |                          |
| CFW080010T3848 |        |               |                        |               |              |                |                |                        |               |               |                          |
| CFW080016T3848 |        | 75            | 454                    | 101           |              |                |                |                        |               |               |                          |
| CFW080026T3848 | 1      | 75<br>(2.95)  | 151<br>(5.95)          | 131<br>(5.16) | (2.2)        | -              | -              | -                      | -             | -             | No                       |
| CFW080040T3848 |        |               |                        |               |              |                |                |                        |               |               |                          |
| CFW080027T3848 |        |               |                        |               |              |                |                |                        |               |               |                          |
| CFW080043T3848 |        | 115           | 200                    | 150           | 2            |                | 265            | 165                    | 216           | 5.3           |                          |
| CFW080065T3848 | 2      | (4.53)        | (7.87)                 | (5.91)        | (4.4)        | Α              | (10.43)        | (6.50)                 | (8.50)        | (11.7)        |                          |
| CFW080100T3848 |        |               |                        |               |              |                |                |                        |               |               |                          |
| CFW080130T3848 |        | 143           | 203                    | 165           | 2.5          |                |                |                        |               |               | Sí                       |
| CFW080160T3848 | 3      | (5.63)        | (7.99)                 | (6.50)        | (5.5)        |                | 340            | 215                    | 216           | 7.9           |                          |
| CFW080240T3848 |        | 182           | 290                    | 196           | 6            | В              | (13.39)        | (8.46)                 | (8.50)        | (17.4)        |                          |
| CFW080300T3848 | 4      | (7.16)        | (11.41)                | (7.71)        | (13.2)       |                |                |                        |               |               |                          |
|                |        |               |                        |               |              |                |                |                        |               |               |                          |
| CFW080017T5060 |        |               |                        |               |              |                |                |                        |               |               |                          |
| CFW080030T5060 |        |               |                        |               |              |                |                |                        |               |               |                          |
| CFW080043T5060 | 3      | 143           | 203                    | 165           | 2.5          | В              | 340            | 215                    | 216           | 7.9           | Sí                       |
| CFW080070T5060 |        | (5.63)        | (7.99)                 | (6.50)        | (5.5)        |                | (13.39)        | (8.46)                 | (8.50)        | (17.4)        |                          |
| CFW080100T5060 |        |               |                        |               |              |                |                |                        |               |               |                          |
| CFW080120T5060 |        |               |                        |               |              |                |                |                        |               |               |                          |



## CFW-08 - Especificación del Código



## 1 - Convertidor de Frecuencia WEG CFW-08

2 - Corriente Nominal de Salida:

| 200-240 V |       |  |  |  |  |  |  |
|-----------|-------|--|--|--|--|--|--|
| 0016      | 1,6 A |  |  |  |  |  |  |
| 0026      | 2,6 A |  |  |  |  |  |  |
| 0040      | 4,0 A |  |  |  |  |  |  |
| 0070      | 7,0 A |  |  |  |  |  |  |
| 0073      | 7,3 A |  |  |  |  |  |  |
| 0100      | 10 A  |  |  |  |  |  |  |
| 0160      | 16 A  |  |  |  |  |  |  |
| 0170      | 17 A  |  |  |  |  |  |  |
| 0220      | 22 A  |  |  |  |  |  |  |
| 0280      | 28 A  |  |  |  |  |  |  |
| 0330      | 33 A  |  |  |  |  |  |  |
|           |       |  |  |  |  |  |  |

| 380-480 V |       |  |  |  |  |  |
|-----------|-------|--|--|--|--|--|
| 0010      | 1,0 A |  |  |  |  |  |
| 0016      | 1,6 A |  |  |  |  |  |
| 0026      | 2,6 A |  |  |  |  |  |
| 0027      | 2,7 A |  |  |  |  |  |
| 0040      | 4,0 A |  |  |  |  |  |
| 0043      | 4,3 A |  |  |  |  |  |
| 0065      | 6,5 A |  |  |  |  |  |
| 0100      | 10 A  |  |  |  |  |  |
| 0130      | 13 A  |  |  |  |  |  |
| 0160      | 16 A  |  |  |  |  |  |
| 0240      | 24 A  |  |  |  |  |  |
| 0300      | 30 A  |  |  |  |  |  |

| 500-600 V |       |  |  |  |  |  |
|-----------|-------|--|--|--|--|--|
| 0017      | 1,7 A |  |  |  |  |  |
| 0030      | 3,0 A |  |  |  |  |  |
| 0043      | 4,3 A |  |  |  |  |  |
| 0070      | 7,0 A |  |  |  |  |  |
| 0100      | 10 A  |  |  |  |  |  |
| 0120      | 12 A  |  |  |  |  |  |

3 - Número de Fases de la Alimentación de Entrada S = Monofásico T = Trifásico

B = Monofásico o trifásico

4 - Tensión de Red

2024 = 200-240 Vca3848 = 380-480 Vca5060 = 500-600 Vca

5 - Idioma del Manual

P = Portugués E = Inglés S = Español G = Alemán

6 - Opcionales

S = Estándar (sin opicionales)

O = Con opcionales

7 - Grado de Protección

En Blanco = Estándar

N1 = NEMA1 (para mecánicas 1 y 2)

8 - Interfaz Hombre Máquina

En Blanco = Estándar SI = Sin Interfaz

9 - Tarjeta de Control

En Blanco = Estándar (CFW-08 Estándar)

A1 = CFW08 Plus

A2 = CFW08 Plus con Entradas Analógicas Bipolares)

A3 = CANopen (1)A4 = DeviceNet (1)

A5 = Función Multibombas

10 - Filtro de EMC

En Blanco = Sin filtro

FA = Filtro clase A interno

11 - Hardware Especial

En Blanco = No tiene

Hx = Hardware especial versión X

12 - Software Especial

En Blanco = No tiene

Sx = Software especial versión X

13 - Fin del Código

Ej.: CFW080040B2024EOA1Z

Convertidor de Frecuencia Serie CFW-08 de 4.0A, alimentación monofásica o trifásica en 200-240 Vca, manual en español y tarjeta de control 1 (CFW-08-Plus).

<sup>(1)</sup> No disponible para 500-600V

## CFW-08 - Recursos / Finciones Especiales

#### Estándar / Plus

- HMI incorporada con display LED de 7 segmentos
- Contraseña para habilitar la programación
- Autodiagnóstico de defectos y autoreset
- Indicación de magnitudes específicas (programable) Ei.: m/min, rpm, etc.
- Compensación de deslizamiento (control V/F)
- IxR manual y automático
- Curva lineal y cuadrática V/F ajustable
- Rutina de autoajuste (Control Vectorial Sensorless)
- Frenado Reostático
- Función JOG (Pulso Momentáneo de Velocidad)
- Función "COPY" vía Interfaz Hombre Máquina Remota (HMI-CFW08-RS)
- Rampas doble y lineal tipo "S"
- Rampas de aceleración y deceleración (independientes)
- Frenado CC (corriente continua)
- Función Multispeed (hasta 8 velocidades preprogramadas)
- Selección del sentido de giro del eje del motor
- Selección del modo de operación: Local / Remoto
- Regulador PID sobrepuesto (control automático de nivel, presión, etc)
- Arranque con el motor en vuelo (Flying Start)
- Rechazo de frecuencias críticas o resonantes (Skip Frequency)
- Operación durante fallos momentáneos de la Red (Ride-Through)

## **Opciones**

#### HMI Remota Paralela:

- Interfaz Hombre Maquina Paralela con display de 7 segmentos: HMI-CFW08-RP
- Módulo Interfaz para HMI Paralela: MIP-CFW08-RP
- Cable para interconexión con la HMI Paralela (1, 2, 3, 5, 7.5 y 10 metros): CAB-HMI08-RP-X

#### HMI Remota Serie:

- Interfaz Hombre Maquina Serie con display de 7 segmentos: HMI-CFW08-RS
- Módulo Interfaz para HMI Paralela: MIS-CFW08-RS
- Cable para interconexión con la HMI Serie (1, 2, 3, 5, 7.5 y 10 metros): CAB-RS-X

Tarjeta de expansión con entradas digitales en 120Vca: KAC-120-CFW08

#### Módulos de Comunicación Serial:

- Módulo RS-232: KCS-CFW08
- Módulo RS-485: KRS-484-CFW08
- Convertidor RS-232 para RS-485: MIW-02

#### Módulos de Comunicación Fieldbus:

- Modbus-RTU: necesario cualquiera de los módulos RS-485 o RS-232;
- Gateway Profibus DP: MFW-01/PD (también requiere cualquiera de los módulos RS-485 o RS-232);
- Módulo CANopen: KFB-CO-CFW08;
- Módulo DeviceNet: KFB-DN-CFW08.

Software de Programación en al entorno Windows - SuperDrive

Kit NEMA1 / IP20 para conexión en electroducto metálico: KN1-CFW08-MX

Kit para montaje en Riel DIN: KMD-CFW08-M1


Filtro EMC interno clase A

Filtro EMC externo clase B





## CFW-09



La línea de convertidores de frecuencia WEG CFW-09 incorporan la más avanzada tecnología para el accionamiento de motores eléctricos de inducción trifásicos.

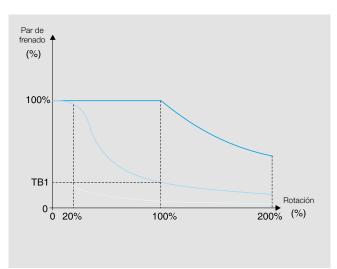
Los CFW-09 también ofrece la tecnología Vectrue® que permite incorporar en un único producto el método de control V/F, Vectorial Sensorless y Vectorial con Encoder. Estos métodos de control son fácilmente seleccionados vía programación en los parámetros de configuración.

Asimismo, la serie CFW-09 permite un exclusivo método de frenado denominado Optimal Braking®. Esta función permite que se elimine en algunas aplicaciones la necesidad de la resistencia de frenado siendo una solución simples compacta y económica.



## Vectrue Technology ®

Tecnología desarrollada y patentada por WEG que proporciona al convertidor de frecuencia CFW-09 las siguientes características:


- Control V/F y vectorial programable en el mismo producto;
- Control vectorial sensorless y opcionalmente con encoder;
- Control vectorial sensorless con alto par (torque) y rápidas respuestas mismo en velocidades muy bajas;
- Autoajuste en control vectorial que se adapta automáticamente al motor y la carga.

## CFW-09 - Optimal Braking®

Algunos tipos de aplicaciones requieren tiempos de frenado reducidos y/o paradas de cargas de alta inercia. En estos procesos, una gran cantidad de energía proveniente del motor es entregue a los convertidor de frecuencia. Para manipular esta energía los convertidores de frecuencia tradicionales disipan esta energía en bancos de resistores que usualmente son pesados, de alto coste y requieren ambientes específicos para su instalación y para la disipación del calor.

Como una opción para los resistores de frenado, el CFW-09 ofrece un método especial de frenado, en el modo de control vectorial, llamado Optimal Braking<sup>®</sup>. Esta innovación proporciona a la carga un par de alto rendimiento sin necesidad de resistencia de frenado.

La gráfica de abajo muestra las ventajas del método Optimal Braking® comparado con los otros métodos, asegurando una solución ideal, optimizada y de coste reducido para las aplicaciones que requieren frenados.



Par de Frenado típico x Curva de Rotación para motores accionados por un CFW-09

Curva de Par de Frenado Reostático Curva de Par de "Optimal Braking ®" Curva de Par de Frenado CC

## CFW-09 - Otras Características

- Microcontrolador de alta eficiencia tipo RISC 32 bits
- Control V/f y Vectorial seleccionable vía parámetro
- Interfaz Hombre-Máquina con doble pantala (LCD y LED)
- Amplio rango de potencias: 1.1 hasta 1200kW
- Seleccionable para Par Constante o para Par Variable
- Grado de protección NEMA 1 estándar hasta 150kW (200HP), IP20 hasta 450kW (600HP) y NEMA 4X / IP56 en acero inoxidable hasta 7.5kW (10HP)
- Compactos
- Instalación y programación sencilla
- Puesta en marcha (start-up) orientada
- Posibilidad de fijación vía brida, con disipador detrás de la placa de montaje
- Programación vía PC con software SuperDrive (opcional)
- Link CC accesible para alimentación en corriente continua o rectificador regenerativo
- Comunicación FieldBus: Modbus-RTU, ProfiBus DP, DeviceNet, Metasys N2 y Ethernet/IP
- Certificaciones Internacionales UL, cUL, CE, C-Tick e IRAM



## CFW-09 - Aplicaciones

## **QUIMICA Y PETROQUIMICA**

- Ventiladores / Extractores de aire
- Bombas Centrífugas
- Bombas Dosificadoras / Proceso
- Mezcladoras
- Compresores
- Extrusoras

#### **PAPEL Y CELULOSA**

- Bombas Dosificadoras
- Bombas de Proceso
- Ventiladores / Extractores
- Agitadoras / Mezcladoras
- Filtros Rotativos
- Hornos Rotativos
- Cintas transportadoras
- Máquinas de Papel
- Rebobinadoras de Papel
- Calandras

## **PLASTICO Y CAUCHO**

- Extrusoras
- Inyectoras
- Mezcladoras
- Calandras / Tiradores
- Bobinadoras / Desbobinadoras
- Máquinas de Corte y Soldadura
- Granuladoras

## **AZÚCAR Y ALCOHOL**

- Bombas Centrífugas de Azúcar
- Bombas de Proceso
- Cintas transportadoras
- Dosificadoras de Bagazo

## **ZUMOS Y BEBIDAS**

- Bombas Dosificadoras / Proceso
- Embotelladoras
- Mezcladoras
- Mesas de Rodillos
- Cintas Transportadoras

## **CEMENTO Y MINERÍA**

- Ventiladores / Extractores
- Bombas
- Molinos
- Mesas Vibratorias
- Separadores Dinámicos
- Cintas Transportadoras
- Horno de Cemento

## **ALIMENTOS**

- Bombas Dosificadoras / Proceso
- Ventiladores / Extractores
- Mezcladoras
- Secadoras / Hornos
- Peletizadoras
- Monovías
- Cintas transportadoras

- Agitadoras / Mezcladoras
- Secadoras / Lavadoras
- Telares
- Hiladoras
- Molinos / Cardas
- Urdidoras / Husos
- Bobinadoras

## **INDUSTRIA SIDERURGICA**

- Ventiladores / Extractores
- Mesas de Rodillos
- Bobinadoras / Desbobinadoras
- Puentes Grúas
- Prensas / Tornos / Fresas
- Agujereadoras / Rectificas
- Laminadores
- Líneas de Corte
- Líneas de Inspección de Chapas
- Líneas de Moldeo de Lingote
- Formadora de Tubos
- Trefiladora
- Bombas

## **CERÁMICA**

- Ventiladores / Extractores
- Secadoras / Hornos
- Molino de Bolas
- Mesas de Rodillos
- Esmaltadoras
- Cintas Transportadoras

#### **VIDRIOS**

- Ventiladores / Extractores
- Embotelladoras
- Mesas de Rodillos
- Cintas Transportadoras

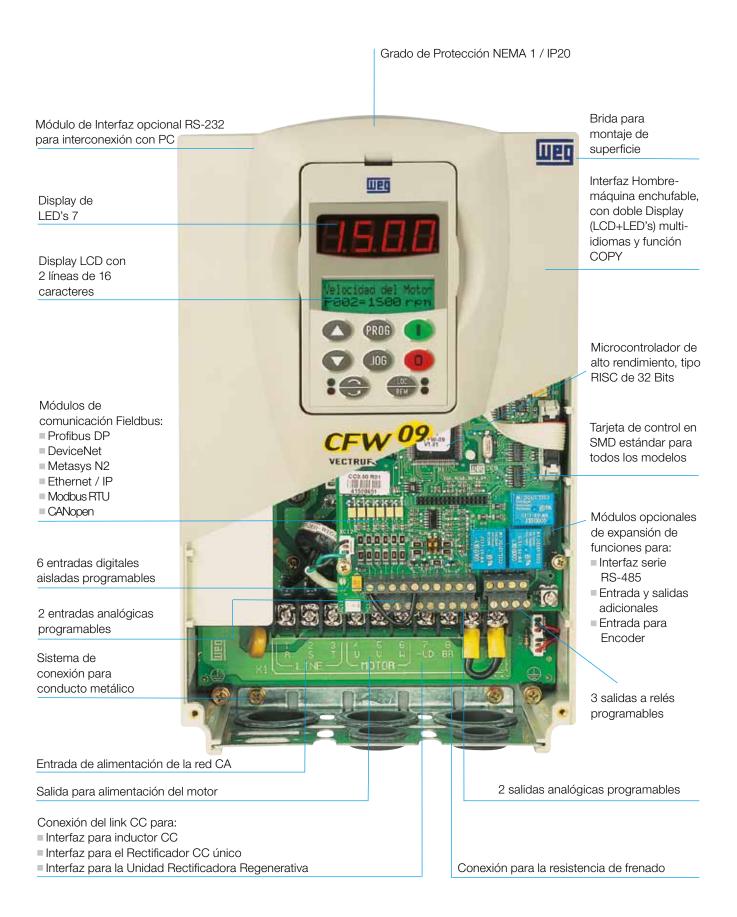
#### **HVAC**

- Bombas de Proceso
- Ventiladores / Extractores
- Sistemas de Aire Acondicionado

#### **MADERA**

- Cuchillas
- Tornos de Chapas
- Lijadoras
- Sierras

## **SANEAMIENTO**


- Bombas Centrífugas
- Sistemas "Boosters"

## **ASCENSORES**

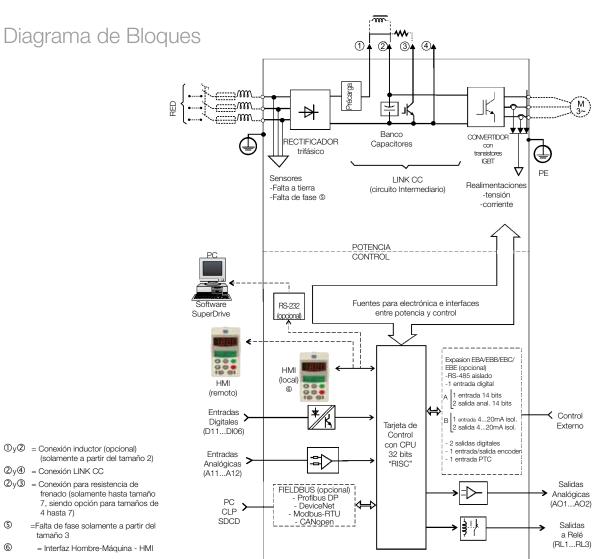
- Ascensores de Carga
- Ascensores de Pasajeros
- Puentes Grúas
- Guindastes



## CFW-09 - Un Producto Completo, Flexible y Compacto



## CFW-09 - Tipos de Montaje




Los convertidores CFW-09 permiten gran flexibilidad de montaje. Además del montaje tradicional por la base también se puede fijar los equipos por brida permitiendo que el disipador quede de trás de la placa de fijación.

Como resultado del modo de montaje por brida es que el calor generado por el Convertidor de Frecuencia será disipado externamente, reduciendo la temperatura interna del armario. Esta configuración de montaje permite dimensiones menores de los armarios y reduce la necesidad de ventiladores.

# Montaje por la BASE Salida del flujo de aire Salida del flujo de aire Fintrada del flujo de aire Entrada del flujo de aire

flujo de aire





## CFW-09 - Interfaz Hombre-Máquina (HMI)

#### **Interfaz Inteligente**

La línea CFW-09 posee una interfaz inteligente con doble display: LED's (7 segmentos) y LCD (2 líneas de 16 caracteres) que permite la visualización a larga distancia, además de presentar una descripción detallada de todos los parámetros y mensajes vía display LCD alfanumérico.

#### Idioma Seleccionable

La interfaz de operación inteligente permite al usuario elegir el idioma de programación, de lectura y presentación de los parámetros y de los mensajes alfanuméricos a través del display LCD (Cristal Líquido).

La elevada capacidad tanto de hardware como de software de la HMI permite al usuario varias opciones de idiomas (Español, Portugués, Inglés y Alemán) y de este modo adecua el CFW-09 a cualquier usuario del mercado.

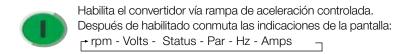
## Puesta en Marcha (Start-up) Orientada

Los convertidores de frecuencia CFW-09 incorporan un recurso de programación especialmente desarrollado para facilitar y agilizar la inicialización de la puesta en marcha del equipo.

A través de una rutina orientada y automática, este recurso guía al usuario en la introducción secuencial de las características mínimas necesarias para una perfecta adaptación del convertidor de frecuencia al motor y a la carga accionada.

## **Función COPY**

La interfaz inteligente también incorpora la función "Copy", que permite copiar la parametrización de un Convertidor de Frecuencia a otro, proporcionando rapidez, fiabilidad y repetitividad de programación en aplicaciones de maquinas fabricadas en serie.





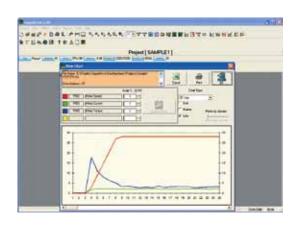





## CFW-09 - Funciones de la Interfaz Hombre-Máquina (HMI)



- Deshabilita el convertidor vía rampa (parada). Reajusta el convertidor después de la existencia de errores.
- Aumenta la velocidad o el número / contenido del parámetro.
- Disminuye la velocidad o el número / contenido del parámetro.
- Selecciona (conmuta) pantalla entre el número del parámetro y su valor (posición/contenido) para programación.
- Cuando se presiona el motor trabaja en velocidad JOG.
- Selector Horario/Antihorario que cambia el sentido de giro del motor cuando presionado.
- Selecciona el modo de operación: Local o Remoto.

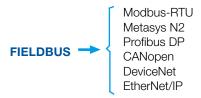

## Superdrive Software de Programación de Convertidores

El SuperDrive es un software en entorno Windowns que permite al usuario programar, controlar y monitorear el CFW-09 a través de un PC.

El usuario también puede cambiar la parametrización on-line o guardar los cambios de modo off-line en el PC. El SuperDrive también permite al usuario ver las curvas de monitoreo de los parámetros y guardar estos datos en ficheros.

La comunicación entre Convertidor de Frecuencia y el PC es vía la interfaz serie RS-232 o RS-485.

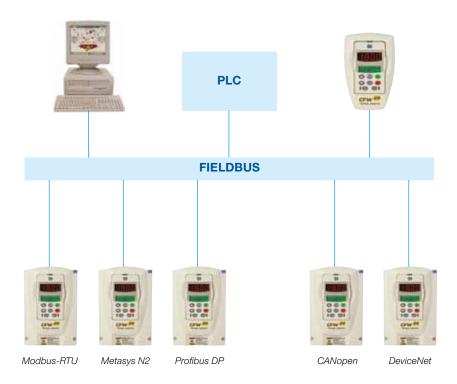
El software SuperDrive esta disponible para descarga, sin coste, en el sitio: www.weg.net








## CFW-09 - Comunicaciones


El CFW-09 puede operar en red de comunicación "Fieldbus" a través de los protocolos más comunes existentes en el mercado. Las opciones que están disponibles son:



Destinadas principalmente a la integración de automatización en plantas industriales, estas redes de comunicación rápidas ofrecen ventajas en la supervisión, en el monitoreo y en el control de los CFW-09; aumentando el rendimiento y optimizando la relación coste-beneficio en el sistema completo.

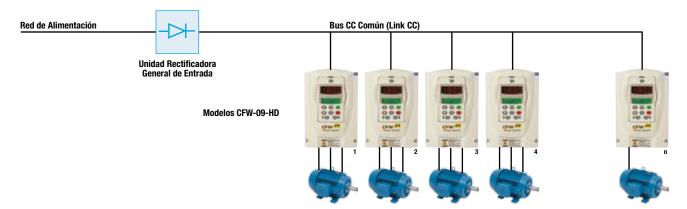
El CFW-09 puede ser fácilmente conectado a redes de comunicaciones con los siguientes Kits Fieldbus:

- Modbus-RTU: KCS-CFW09 (RS-232), EBA.01-CFW09, EBA.02-CFW09, EBB.01-CFW09 o EBB.04-CFW09 (RS-485).
- Metasys N2: Versión especial de firmware VE2.03 y EBA.01-CFW09, EBA.02-CFW09, EBB.01-CFW09 o EBB.04-CFW09 (RS-485).
- Profibus DP: KFB-PD (DP-V0) o KFB-PDPV1 (DP-V1).
- CANopen: PLC1.01 o PLC2.00.
- DeviceNet: KFB-DN o KFB-DD (AC Drive Profile).
- Ethernet/IP: KFB-EN.





## Bus CC Común y Sistemas Regenerativo

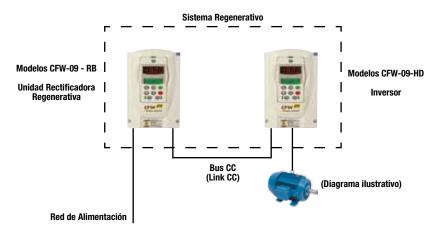

Los CFW-09 disponen de terminales de acceso al link CC, que permite al CFW-09 operar en topología Bus CC común o en topología sistema regenerativo.

#### **Bus CC Común (Link CC)**

La topología Bus CC común es usualmente aplicada en los sistemas multi-motor y es una excelente solución para la búsqueda de ahorro de energía. En esta configuración los rectificadores individuales de cada VSD son reemplazados por un rectificador común y unico. Cada convertidor de frecuencia es entonces directamente alimentado por el Bus CC a través de los terminales del link CC.

Esta solución permite que la energía del Bus CC pueda ser compartida con los demás convertidores de frecuencia conectados con el fin de optimizar el consumo de energía del sistema.

El CFW-09 estándar puede ser conectado a los sistemas de Bus CC. Opcionalmente los modelos CFW-09 pueden ser suministrados sin el puente rectificador de entrada siendo equipos especialmente desarrollados para este tipo de aplicación.




#### **Sistemas Regenerativos**

Algunas aplicaciones, tales como: centrifugadoras, bobinadoras / desbobinadoras de papel y grúas, presentan constantes ciclos de frenado que devuelven grandes cantidades de energía al Bus CC del VSD. Esta energía no puede ser absorbida por los VSD y generalmente es disipada a través de resistencias. Sin embargo, es posible reaprovechar esta energía mediante el uso de Convertidores de Frecuencias Regenerativos. En este sistema, la energía excesiva en el link CC es regenerada a la red; proporcionando importantes ahorros de energía.

La solución regenerativa WEG consiste de un CFW-09 RB (Unidad Rectificadora Regenerativa) alimentado por un CFW-09 HD a través del link CC.

Además de los ahorros de energía, un sistema regenerativo proporciona muchas otras ventajas, tales como: factor de potencia cerca de 1 y la eliminación de la distorsión armónica en la red de alimentación.





## Accesorios y Opciones

Interfaz de Operación Inteligente con Doble Display (LED's y LCD):permite optimizar la visualización de las informaciones a larga distancia y presenta una descripción detallada de todos los parámetros y mensajes vía display LCD alfanumérico. Longitud máxima de instalación sin moldura de 5m y con moldura (KMR CFW-09) de 10m.

Tapa Ciega TCL (local): reemplazar la HMI Estándar cuando la aplicación no requiere la misma.

Kit Interfaz de Comunicación Serie RS-232: compuesto por un modulo de interfaz serie y accesorios (cables, conectores y el CD del software SuperDrive) que permite conectar el CFW-09 a un PC o a un otro equipo vía interfaz serie RS-232.

Kit Moldura para Interfaz Remota: permite el montaje de la HMI Estándar en la puerta del armario (tablero) o en la consola de la máquina. Longitud máxima de 10 m (33ft).

Interfaz Hombre-Máquina Remota NEMA4 / IP56: Para la instalación remota en la puerta del armario (tablero) o en consola de la máquina cuando el entorno presenta incidencia de agua o otros agentes agresivos (polvo, cemento, etc). Longitud máxima de 10 m (33ft).

Cables con longitudes (X): 1, 2, 3, 5, 7.5 y 10 m (3.3, 6.6, 10, 16, 25 y 33ft). Cables especiales con longitudes superiores solamente sob consulta

Profibus DP V0 - KFB - PD V0 Profibus DP V1 - KFB - PD V1 DeviceNet - KFB - DN

DeviceNet Drive Profile - KFB - DD Ethernet / IP - KFB - EN



Interfaz Hombre - Máquina (HMI) Completa (Estándar) HMI-CFW09-LCD



Tapa Ciega TCL-CFW09



Kit Interfaz de Comunicación Serie RS-232 KCS-CFW09



Kit Moldura para Interfaz Remota KMR-CFW09



Interfaz Hombre-Máquina Remota NEMA4 / IP56 HMI-CFW09-LCD-N4



Cables para Interconexión con la Interfaz Remota CAB-HMI09-X



Kits de Comunicación Fieldbus

## Accesorios y Opciones

| Modelos EBA                             |    |    | EBB |    |    |    |    | EBC1 |    |    | EBE |    |
|-----------------------------------------|----|----|-----|----|----|----|----|------|----|----|-----|----|
| Funciones                               | 01 | 02 | 03  | 01 | 02 | 03 | 04 | 05   | 01 | 02 | 03  | 01 |
| Salida de Encoder 12Vcc (interno)       | 1  | -  | -   | 1  | 1  | -  | -  | -    | -  | -  | 1   | -  |
| Entrada de Encoder 5Vcc (interno)       | -  | -  | -   | -  | -  | -  | 1  | -    | -  | 1  | -   | -  |
| Entrada de Encoder 5 15Vcc (externo)    | -  | -  | -   | -  | -  | -  | -  | -    | 1  | -  | -   | -  |
| Salida de Encoder 5 15Vcc (externo)     | 1  | -  | -   | 1  | -  | -  | 1  | -    | -  | -  | -   | -  |
| Interfaz Serie RS-485 Aislada           | 1  | 1  | -   | 1  | -  | -  | 1  | -    | -  | -  | -   | 1  |
| Entrada Analógica Diferencial (10 bits) | 1  | -  | 1   | -  | -  | -  | -  | -    | -  | -  | -   | -  |
| Salida Analógica Diferencial (14 bits)  | 2  | -  | 2   | -  | -  | -  | -  | -    | -  | -  | -   | -  |
| Entrada Analógica Aislada (10 bits)     | -  | -  | -   | 1  | -  | 1  | 1  | -    | -  | -  | -   | -  |
| Salida Analógica Aislada (11 bits)      | -  | -  | -   | 2  | -  | 2  | 2  | 2    | -  | -  | -   | -  |
| Entrada Digital                         | 1  | 1  | 1   | 1  | 1  | 1  | 1  | -    | -  | -  | -   | -  |
| Entrada PTC para el Motor               | 1  | 1  | 1   | 1  | 1  | 1  | 1  | -    | -  | -  | -   | 1  |
| Salida Digital (Colector Abierto)       | 2  | 2  | 2   | 2  | 2  | 2  | 2  | -    | -  | -  | -   | -  |



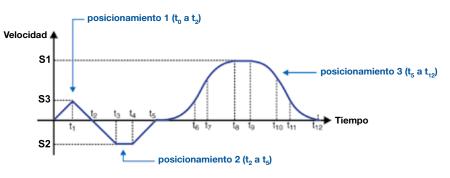
Tarjetas de Expansión EBA.0X-CFW09 EBB.0X-CFW09 EBC1.0X-CFW09 EBE.0X-CFW09

Tarjetas de

Expansión con Función PLC:

PLC1 and PLC2

Las tarjetas de expansión PLC1 y PLC2 permiten al convertidor de frecuencia CFW-09 funciones de PLC, generador de referencias de velocidad y modo de control por posicionamiento.


## **Características Técnicas**

- Posicionamiento con perfil trapezoidal y "S" (absoluto y relativo);
- Búsqueda del cero máquina (Homming);
- Programación en Lenguaje Ladder a través del software WLP, temporizadores, contadores, bobinas y contactos;
- Interfaz serie RS-232 con protocolo Modbus RTU;
- Reloj de tiempo real (solo PLC2);
- 100 parámetros configurables disponible para el usuario vía HMI o WLP;
- Función Maestro / Esclavo (Electronic Gearbox);
- Interfaz CAN para CANopen y protocolos DeviceNet;
- Maestro CANopen (solo PLC2), permitiendo el control de hasta 8 dispositivos esclavos.

## **Especificaciones Técnicas**

| Entradas y Salidas    | PLC1                                                        | PLC2                                                        |
|-----------------------|-------------------------------------------------------------|-------------------------------------------------------------|
| Entradas Digitales    | 9 entradas bipolares: 24 Vcc                                | 9 entradas bipolares: 24Vcc                                 |
| Salidas Digitales     | 3 salidas bidireccional colector abierto: 24Vcc, 500mA      | 3 salidas bidireccional colector abierto: 24Vcc, 500mA      |
| Salidas a Relé        | 3 salidas con contactos NO: 250Vac, 3A                      | 3 salidas con contactos NO: 250Vac, 3A                      |
| Entrada de Encoder    | 1 entrada incremental para encoder: 15Vcc, 300mA, interno   | 2 entradas incremental para encoder: 524Vdc, externo        |
| Interfaz Seria RS-232 | 1 puerto para el protocolo Modbus-RTU                       | 1 puerto para el protocolo Modbus-RTU                       |
| Interfaz CAN          | 1 puerto para CANopen (esclavo) y para protocolos DeviceNet | 1 puerto para CANopen (esclavo) y para protocolos DeviceNet |
| Entrada Analógica     | -                                                           | 1 entrada diferencial: -10+10Vcc / -2020mA, 14 bits         |
| Salida Analógica      | -                                                           | 2 salidas: -10+10Vcc / -2020mA, 12 bits                     |
| Entrada PTC Motor     | -                                                           | 1 entrada. Resistencia minima: 100W                         |

Ejemplo de una aplicación en modo posicionamiento con la tarjeta PLC1 o PLC2





## CFW-09 - Datos Técnicos

|                 |                                     | I                                         | 000 000 1/ ( 100/ 150/)                                                                                                         |
|-----------------|-------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
|                 |                                     |                                           | 220-230 Vca (+10%, -15%)                                                                                                        |
|                 | Tensión                             | Trifásica                                 | 380-480 Vca (+10%, - 15%)                                                                                                       |
| AL IMPRITACION  |                                     |                                           | 500-690 Vca (+ 10%, -15%)<br>660-690 Vca (+ 10%, -15%)                                                                          |
| ALIMENTACION    | Francis                             |                                           |                                                                                                                                 |
|                 | Frecuencia Desbalanceo entre fases  |                                           | 50 / 60 Hz +/- 2 Hz (48 62 Hz)                                                                                                  |
|                 |                                     |                                           | Hasta 3 %<br>Mayor gue 0,98                                                                                                     |
|                 | Cos (Factor de desplazamiento)      | NEMA 1 / ID OC                            | Mayor que 0,98<br>0 (modelos18 y 8E), IP 20 (modelos 910 y 10E)                                                                 |
|                 | Grado de Protección                 |                                           | 4x / IP 56 ( modelos hasta 10 HP / 7.5kW )                                                                                      |
| PROTECCION      |                                     |                                           | 1 – Gris claro PANTONE 413 C (p/ Tamaños 1 y 2 )                                                                                |
| FRUIECCION      | Color                               |                                           | netálicas – Gris claro RAL 7032 (p/ Tamaños 3 10 )                                                                              |
|                 |                                     |                                           | Gris oscuro RAL 7022 (p/ Tamaños 3 10 )                                                                                         |
|                 | Tipo de alimentación                |                                           | ente Conmutada alimentada por el link CC                                                                                        |
|                 | Microprocesador                     | rue                                       | Tipo RISC 32 bits                                                                                                               |
|                 |                                     |                                           | SVM (Space Vector Modulation)                                                                                                   |
|                 | Tecnología PWM                      | Reguladores de Corrient                   | te, Flujo y Velocidad implementados en software ( Full Digital )                                                                |
| CONTROL         | Tipos de control                    |                                           | ess (lazo abierto) y Vectorial con Encoder (lazo cerrado)                                                                       |
|                 | Frecuencia de Conmutación           | V/1, Vectorial Conson                     | 1.25 / 2.5 / 5.0 / 10 kHz                                                                                                       |
|                 |                                     |                                           | 0 1020 Hz para control V/Hz                                                                                                     |
|                 | Frecuencia de Salida                |                                           | 0 408 Hz para control Vectorial                                                                                                 |
|                 |                                     | Par Constante (CT) 150% dur               | rante 60 seg. a cada 10 min. / 180% durante 1 seg. a cada 10 min.                                                               |
|                 | Sobrecarga admisible                |                                           | rante 60 seg. a cada 10 min. / 150% durante 1 seg. a cada 10 min.                                                               |
|                 | Rendimiento                         | 1 41 00110141110 (01) 110 70 441          | Mayor que 97%                                                                                                                   |
|                 | Tional monte                        |                                           | Regulación : 1 % de la velocidad nominal con compensación resbalamiento                                                         |
|                 |                                     | V/F                                       | Resolución : 1 rpm (referencia vía teclado)                                                                                     |
|                 |                                     |                                           | Rango de regulación de velocidad = 1 : 20                                                                                       |
|                 |                                     |                                           | Regulación : 0,5 % de la velocidad nominal del motor                                                                            |
| DE11D111E11E0   |                                     | Sensorless                                | Resolución : 1 rpm ( referencia vía teclado )                                                                                   |
| RENDIMENTO      | Control de velocidad                |                                           | Rango de regulación de velocidad = 1:100                                                                                        |
|                 |                                     |                                           | Regulación con:                                                                                                                 |
|                 |                                     | Con                                       | +/- 0,1 % de la velocidad nominal del motor para ref. Analógica 10 bits                                                         |
|                 |                                     | Encoder                                   | +/- 0,01 % de la velocidad nominal del motor para ref. Digital (Ej.: Teclado)                                                   |
|                 |                                     |                                           | +/- 0,01 % de la velocidad nominal del motor para ref. Analógica 14 bits                                                        |
|                 |                                     |                                           | Rango de Regulación de velocidad: bajando a 0 rpm                                                                               |
|                 | 0 1 1 1                             | V 1 14 1                                  | Regulación : +/- 10 % del par nominal del motor                                                                                 |
|                 | Control de par                      | Vector Modes                              | Rango de regulación de par : 0 150 % del par nominal del motor                                                                  |
|                 |                                     | 2 Entradas diferenciale                   | s programables ( 10 bits ): 010 Vcc, 020 mA o 420 mA                                                                            |
|                 | Analógicas                          | 1 Entrada programable                     | bipolar ( 14 bits ): -10 + 10 Vcc, 020 mA o 420 mA (1)                                                                          |
|                 |                                     |                                           | e aislada ( 10 bits ): 0 10 Vcc, 020 mA o 420 mA (1)                                                                            |
| ENTRADAS        |                                     |                                           | Entradas programables aisladas : 24 Vcc                                                                                         |
|                 | Digitales                           |                                           | Entrada programable aislada : 24 Vcc                                                                                            |
|                 |                                     |                                           | able aislada : 24 Vcc ( para Termistor-PTC del motor ) (1)                                                                      |
|                 | Encorder                            |                                           | ncoder diferencial aislada: 515Vcc Fuente externa (1)                                                                           |
|                 |                                     |                                           | alidas programables (11 bits): 010 Vcc                                                                                          |
|                 | Analógica                           |                                           | ipolares programables (14 bits): -10+10Vcc (1)                                                                                  |
|                 |                                     |                                           | das programables (11 bits): 020mA o 420mA (1)                                                                                   |
| SALIDA          | Relé                                |                                           | Salidas NO/NC programables: 240Vca, 1A                                                                                          |
|                 |                                     |                                           | 1 Salida NO programable: 240Vca, 1 <sup>a</sup>                                                                                 |
|                 | Transistorizada                     |                                           | ada colector abierto programable: 24Vcc, 50mA (1)                                                                               |
|                 | Encoder<br>Serial                   |                                           | coder aislada y diferencial: alimentación externa 515Vcc (1)                                                                    |
| COMUNICACION    |                                     | Modbus PTII Profibus DP Do                | - CFW09 o RS-485 , aislada , via tarjetas EBA o EBB (1)<br>viceNet, EtherNet/IP, DeviceNet Drive Profile, CANopen y Metasys (2) |
|                 | Fieldbus (1)                        | Subtensión en el circuito intermediario   |                                                                                                                                 |
|                 |                                     | Sobretensión en el circuito intermediario |                                                                                                                                 |
|                 |                                     | Sobretemperaturas en el                   |                                                                                                                                 |
|                 |                                     | convertidor y en el motor                 | Error externo                                                                                                                   |
| SEGURIDAD       | Protecciones                        | Sobrecorriente en la salida               | Error de autodiagnose y de programación                                                                                         |
|                 |                                     | Sobrecarga en el motor ( i x t )          | Error de comunicación serie                                                                                                     |
|                 |                                     | Sobrecarga en la resistencia de frenado   | Error de conexión invertida ( motor o encoder )                                                                                 |
|                 |                                     | Error en la CPU (Watchdog) / EPROM        | Falta de fase en la alimentación (modelos 30A. y mayores)                                                                       |
|                 |                                     | Falla del encoder                         | Falla de conexión del interfaz IHM– CFW09                                                                                       |
|                 | Temperatura                         |                                           | C (104°F), hasta 50 °C (122°F) con reducción de 2% / °C                                                                         |
| CONDICIONES DE  | Humedad                             | (== 1, 16                                 | 5 90% sin condensación                                                                                                          |
| AMBIENTE        |                                     | 01000m (                                  | 3300ft), hasta 4000m (13100ft) con reducción de                                                                                 |
|                 | Altitud                             | 10% /                                     | 1000m (3% /1000ft) en la corriente de saida                                                                                     |
|                 | EMC Directiva 89/336/EEC-EN 61800-3 | Compatibilidad Electroma                  | agnética – Ambiente Industrial (EMC - Emisión e Inmunidad)                                                                      |
|                 | LVD 73 / 23 / EEC                   |                                           | Directiva de Baja Tensión                                                                                                       |
| CONFORMIDADES/  | IEC 146                             |                                           | Convertidores semiconductores                                                                                                   |
| NORMAS          | UL 508C                             |                                           | uipamientos para conversión de energía                                                                                          |
|                 | EN 50178                            |                                           | os electrónicos para uso en instalación de potencia                                                                             |
|                 | EN 61010                            |                                           | quipamientos eléctricos para uso en medición, control y laboratorios                                                            |
|                 | UL (USA) y cUL (CANADA)             | l                                         | Underwriters Laboratories Inc. / EE.UU.                                                                                         |
| CERTIFICACIONES | CE (EUROPA)                         |                                           | Phoenix Test-Lab / Alemania                                                                                                     |
| JETTI IONOIONEO | IRAM (ARGENTINA)                    |                                           | Instituto Argentino de Normalización                                                                                            |
|                 | C-Tick (AUSTRÁLIA) 2250/1132383     |                                           | Australian Communications Authority                                                                                             |
|                 |                                     |                                           |                                                                                                                                 |

<sup>(1)</sup> Requiere tarjeta opcional;(2) Require versión de firware especial.



## CFW-09 - Datos Técnicos

|                                          | Programación |                                                                                                                               | Programación de funciones genera                                              | ales del convertidor                                                     |
|------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                                          | Controles    | Conecta / Desc                                                                                                                | onecta, Incrementa / Reduce Velocidad J                                       | OG, FWD/REV y Selección Local / Remoto                                   |
|                                          |              | Referencia de                                                                                                                 | velocidad ( rpm )                                                             | Corriente de salida al motor ( A )                                       |
|                                          |              | Velocidad en                                                                                                                  | el motor ( rpm )                                                              | Tensión de salida al motor (Vca)                                         |
| INTERFAZ                                 |              | Valor proporcional a la                                                                                                       | a velocidad (Ej.: m/min)                                                      | Estado del convertidor                                                   |
| HOMBRE-MAQUINA                           |              | Frecuencia de sali                                                                                                            | da en el motor (Hz)                                                           | Estado de las entradas digitales                                         |
| HUIVIDNE-IVIAQUIIVA                      | Monitoreo    | Tensión del                                                                                                                   | link CC (Vcc)                                                                 | Estado das salidas transistor                                            |
|                                          |              | Par del n                                                                                                                     | notor (%)                                                                     | Estado de las salidas a relé                                             |
|                                          |              | Potencia de                                                                                                                   | salida (kW)                                                                   | Valor de las entradas analógicas                                         |
|                                          |              | Horas del produc                                                                                                              | cto energizado ( h )                                                          | 10 últimos errores almacenados en memoria                                |
|                                          |              | Horas de funciona                                                                                                             | miento / trabajo ( h )                                                        | Mensajes de Errores / Defectos                                           |
|                                          |              | Inter                                                                                                                         | faz hombre-máquina con doble display L                                        | CD + LED ( HMI-CFW09-LCD )                                               |
|                                          |              |                                                                                                                               | Clave de habilitación para p                                                  | · •                                                                      |
|                                          |              |                                                                                                                               | cción del idioma de la HMI ( LCD ) – Espai                                    |                                                                          |
|                                          |              | Selección                                                                                                                     | del tipo de control ( vía parámetro ): V/F,                                   |                                                                          |
|                                          |              |                                                                                                                               | Autodiagnósticos de defectos y A                                              |                                                                          |
|                                          |              |                                                                                                                               | set para programación estándar de fábric                                      |                                                                          |
|                                          |              |                                                                                                                               | autoajuste del convertidor a las condicione                                   |                                                                          |
|                                          |              | indicaci                                                                                                                      | ión de magnitud especifica (programable<br>Compensación de deslizamien        |                                                                          |
|                                          |              |                                                                                                                               | ( Boost de Par ) manual o automá                                              |                                                                          |
|                                          |              |                                                                                                                               | Curva V / F ajustable - M                                                     | · · · · · · · · · · · · · · · · · · ·                                    |
|                                          |              |                                                                                                                               | Límites de velocidad mínim                                                    |                                                                          |
|                                          |              |                                                                                                                               | Límite de la corriente d                                                      | . •                                                                      |
|                                          |              |                                                                                                                               | Ajuste de la corriente de s                                                   |                                                                          |
|                                          |              |                                                                                                                               | Ajuste digital de la ganancia y del Offset o                                  | •                                                                        |
|                                          |              |                                                                                                                               | Ajuste digital de la ganancia de las                                          | salidas analógicas                                                       |
|                                          | Estándar     |                                                                                                                               | Función JOG ( pulso momentán                                                  |                                                                          |
|                                          | 2011.1011    |                                                                                                                               | Función "COPY" (Convertidor ® IHM                                             |                                                                          |
|                                          |              | N* - Nor - N - Nor - N - A                                                                                                    | Funciones de comparación para                                                 | salidas digitales :<br>: T > Tx e T < Tx Donde: N = Velocidad del motor; |
|                                          |              | N  >  NX ; $ N  >  NX $ ; $ N  <  N $                                                                                         | $N^* = Referencia; Is = Corrente salid$                                       |                                                                          |
|                                          |              | Ramnas                                                                                                                        | de aceleración y desaceleración independ                                      |                                                                          |
|                                          |              |                                                                                                                               | Frenado CC                                                                    |                                                                          |
|                                          |              |                                                                                                                               | Frenado Optimo - Contro                                                       | l Vectorial                                                              |
|                                          |              | Frenado Reo                                                                                                                   | stático incorporado – modelos hasta 45 A                                      | / 220-230V y hasta 14A / 500-600Vca                                      |
|                                          |              |                                                                                                                               | Función Multi-Speed (hasta 8 velocido                                         |                                                                          |
|                                          |              |                                                                                                                               | Función Ciclo Automático                                                      |                                                                          |
|                                          |              | Pogu                                                                                                                          | Horímetro y Vatímetro<br>lador PID superpuesto (control automático            |                                                                          |
| OADAGTEDÍOTICAG DE                       |              | negu                                                                                                                          | Selección del sentido de rotación (h                                          |                                                                          |
| CARACTERÍSTICAS DE<br>CONTROL Y OPCIONES |              |                                                                                                                               | Selección para operación Lo                                                   |                                                                          |
| CONTINUE I OF CIONES                     |              |                                                                                                                               | Arranque con el motor en vuel                                                 | o (Flying Start),                                                        |
|                                          |              |                                                                                                                               | Rechazo de velocidades críticas o res                                         | onantes ( Skip Speed )                                                   |
|                                          |              |                                                                                                                               | Operación durante fallas momentáneas                                          |                                                                          |
|                                          |              | · · · · · · · · · · · · · · · · · · ·                                                                                         | emoto IP55 (Display LCD + LED )                                               | HMI-CFW09-LCD-N4                                                         |
|                                          |              |                                                                                                                               | M Remoto (1; 2; 3; 5 ;7,5 y 10m)                                              | CAB - HMI 09-X                                                           |
|                                          |              |                                                                                                                               | a instalación local                                                           | TCL - CFW09                                                              |
|                                          |              | Kit moidura pa                                                                                                                | ara interfaz remoto                                                           | KMR - CFW09 EBA . OX - CFW09                                             |
|                                          |              |                                                                                                                               |                                                                               | EBB .OX CFW09                                                            |
|                                          |              | Tarjetas de Expa                                                                                                              | insión de Funciones                                                           | EBC1 .0X- CFW10                                                          |
|                                          |              |                                                                                                                               |                                                                               | EBE1. OX - CFW09                                                         |
|                                          |              |                                                                                                                               | Profibus DP V0                                                                | KFB - PD                                                                 |
|                                          |              | Kits para Redes de                                                                                                            | Profibus DPV1                                                                 | KFB-PDV1                                                                 |
|                                          |              | Comunicación Fieldbus                                                                                                         | DeviceNet                                                                     | KFB - DN                                                                 |
|                                          |              | (Instalación interna al Convertidor)                                                                                          | DeviceNet Drive Profile                                                       | KFB - DD                                                                 |
|                                          | Opcionales   |                                                                                                                               | Elhernet I IP                                                                 | KFB - EN                                                                 |
|                                          | opololialoo  | Kit Comunicación                                                                                                              | Software SuperDrive Conectores y Cables                                       | KSD - CFW09                                                              |
|                                          |              | (Conver tidor « PC)                                                                                                           | KCS - CFW09                                                                   | TOD - OI WOD                                                             |
|                                          |              | Módulo Interi                                                                                                                 | az Serie RS-232                                                               | KCS - CFW09                                                              |
|                                          |              |                                                                                                                               | prporado (transistor interno)                                                 |                                                                          |
|                                          |              |                                                                                                                               | 230 V y 38 142 A / 380-480 V                                                  | Modelos "DB"                                                             |
|                                          |              | Mo                                                                                                                            | delos: 180600A/380-480V                                                       | DBW - 01                                                                 |
|                                          |              |                                                                                                                               |                                                                               |                                                                          |
|                                          | _            | Kit Frenado Reostatico Mo                                                                                                     | delos: 107472A/500-690V                                                       | DDW 00                                                                   |
|                                          |              | ( unidad externa ) Mo                                                                                                         | delos: 100428A/660-690V                                                       | DBW - 02                                                                 |
|                                          |              | ( unidad externa ) Mo  Kit Fijación vía Brida ( p.                                                                            | delos: 100428A/660-690V<br>/ modelos tamaños 3 8 )                            | KMF - CFW09                                                              |
|                                          |              | Kit Frenado Reostatico<br>(unidad externa) Mo<br>Kit Fijación vía Brida (p.<br>Kit montaje extraible (p/                      | delos: 100428A/660-690V<br>/ modelos tamaños 3 8 )<br>/ modelos tamaños 9 10) | KMF - CFW09<br>KME - CFW09                                               |
|                                          |              | Kit Frenado Reostatico (unidad externa) Mo  Kit Fijación vía Brida (p.  Kit montaje extraible (p./  Kit inductor para Link CC | delos: 100428A/660-690V<br>/ modelos tamaños 3 8 )                            | KMF - CFW09                                                              |



## CFW-09 - Tablas de Selección

La forma correcta para especificar un Convertidor de Frecuencia es seleccionar un equipo que pueda suministrar como mínimo la corriente nominal del motor. Las tablas siguientes indican las potencias de motores correspondientes a cada modelo de Convertidor de Frecuencia.

Los valores de las potencias de motores son solamente como referencia. Las corrientes nominales pueden variar según la velocidad y el fabricante. Las potencias de los motores IEC están basadas en motores WEG de 4 polos; las potencias de los motores NEMA están basadas en la tabla NEC 430-150.

## Tensión del Motor 220Vca / 230Vca:

|            |        |                | Par               | IEC                  | NEMA         | Par              | IEC                  | NEMA         |
|------------|--------|----------------|-------------------|----------------------|--------------|------------------|----------------------|--------------|
| Alimen     | tación | Modelo         | Constante<br>(CT) | 50Hz<br>220V<br>230V | 60Hz<br>230V | Variable<br>(VT) | 50Hz<br>220V<br>230V | 60Hz<br>230V |
| Aimon      | Lucion | Modelo         | Α                 | kW                   | HP           | Α                | kW                   | HP           |
|            | 30     | CFW090006T2223 | 6                 | 1.1                  | 1.5          | 6                | 1.1                  | 1.5          |
|            | 10/3   | CFW090007T2223 | 7                 | 1.5                  | 2            | 7                | 1.5                  | 2            |
|            | _ =    | CFW090010T2223 | 10                | 2.2                  | 3            | 10               | 2.2                  | 3            |
|            |        | CFW090013T2223 | 13                | 3                    | 3            | 13               | 3                    | 3            |
|            |        | CFW090016T2223 | 16                | 4                    | 5            | 16               | 4                    | 5            |
|            |        | CFW090024T2223 | 24                | 5.5                  | 7.5          | 24               | 5.5                  | 7.5          |
|            |        | CFW090028T2223 | 28                | 7.5                  | 10           | 28               | 7.5                  | 10           |
|            |        | CFW090033T2223 | 33                | 9.2                  | 10           | 33               | 9.2                  | 10           |
| <b>^</b> 0 |        | CFW090038T2223 | 38                | 9.2                  | 10           | 38               | 9.2                  | 10           |
| 220-230 V  |        | CFW090045T2223 | 45                | 11                   | 15           | 45               | 11                   | 15           |
| 220        | 30     | CFW090054T2223 | 54                | 15                   | 20           | 68               | 18.5                 | 25           |
|            | , co   | CFW090070T2223 | 70                | 18.5                 | 25           | 86               | 22                   | 30           |
|            |        | CFW090086T2223 | 86                | 22                   | 30           | 105              | 30                   | 40           |
|            |        | CFW090105T2223 | 105               | 30                   | 40           | 130              | 37                   | 50           |
|            |        | CFW090130T2223 | 130               | 37                   | 50           | 150              | 45                   | 50           |
|            |        | CFW090142T2223 | 142               | 37                   | 50           | 174              | 55                   | 60           |
|            |        | CFW090180T2223 | 180               | 55                   | 60           | 180              | 55                   | 60           |
|            |        | CFW090240T2223 | 240               | 75                   | 75           | 240              | 75                   | 75           |
|            |        | CFW090361T2223 | 361               | 110                  | 150          | 361              | 110                  | 150          |

## Tensión del Motor 380Vca / 460Vca:

|            |        |                | Par               | lE IE                | :C                   | NEMA         | Par              | IE                   | C                    | NEMA         |
|------------|--------|----------------|-------------------|----------------------|----------------------|--------------|------------------|----------------------|----------------------|--------------|
| Alimen     | tación | Modelo         | Constante<br>(CT) | 50Hz<br>380V<br>415V | 60Hz<br>380V<br>415V | 60Hz<br>460V | Variable<br>(VT) | 50Hz<br>380V<br>415V | 60Hz<br>440V<br>460V | 60Hz<br>460V |
| Aimon      | taoion | IMOUCIO        | Α                 | kW                   | HP                   | HP           | Α                | kW                   | HP                   | HP           |
|            |        | CFW090003T3848 | 3.6               | 1.5                  | 2                    | 2            | 3.6              | 1.5                  | 2                    | 2            |
|            |        | CFW090004T3848 | 4                 | 1.5                  | 2                    | 2            | 4                | 1.5                  | 2                    | 2            |
|            |        | CFW090005T3848 | 5.5               | 2.2                  | 3                    | 3            | 5.5              | 2.2                  | 3                    | 3            |
|            |        | CFW090009T3848 | 9                 | 4                    | 6                    | 5            | 9                | 4                    | 6                    | 5            |
|            |        | CFW090013T3848 | 13                | 5.5                  | 10                   | 7.5          | 13               | 5.5                  | 10                   | 7.5          |
|            |        | CFW090016T3848 | 16                | 7.5                  | 10                   | 10           | 16               | 7.5                  | 10                   | 10           |
|            |        | CFW090024T3848 | 24                | 11                   | 15                   | 15           | 24               | 11                   | 15                   | 15           |
|            |        | CFW090030T3848 | 30                | 15                   | 20                   | 20           | 36               | 18.5                 | 25                   | 25           |
|            |        | CFW090038T3848 | 38                | 18.5                 | 30                   | 25           | 45               | 22                   | 30                   | 30           |
|            |        | CFW090045T3848 | 45                | 22                   | 30                   | 30           | 54               | 22                   | 40                   | 40           |
| <b>^</b> 0 |        | CFW090060T3848 | 60                | 30                   | 40                   | 40           | 70               | 37                   | 50                   | 50           |
| 380-480 V  | 30     | CFW090070T3848 | 70                | 37                   | 50                   | 50           | 86               | 45                   | 60                   | 60           |
| 380        |        | CFW090086T3848 | 86                | 45                   | 60                   | 60           | 105              | 55                   | 75                   | 75           |
|            |        | CFW090105T3848 | 105               | 55                   | 75                   | 75           | 130              | 55                   | 100                  | 100          |
|            |        | CFW090142T3848 | 142               | 75                   | 100                  | 100          | 174              | 90                   | 125                  | 125          |
|            |        | CFW090180T3848 | 180               | 90                   | 150                  | 150          | 180              | 90                   | 150                  | 150          |
|            |        | CFW090211T3848 | 211               | 110                  | 175                  | 150          | 211              | 110                  | 175                  | 150          |
|            |        | CFW090240T3848 | 240               | 132                  | 200                  | 200          | 240              | 132                  | 200                  | 200          |
|            |        | CFW090312T3848 | 312               | 160                  | 250                  | 250          | 312              | 160                  | 250                  | 250          |
|            |        | CFW090361T3848 | 361               | 185                  | 300                  | 300          | 361              | 185                  | 300                  | 300          |
|            |        | CFW090450T3848 | 450               | 220                  | 350                  | 350          | 450              | 220                  | 350                  | 350          |
|            |        | CFW090515T3848 | 515               | 280                  | 450                  | 450          | 515              | 280                  | 450                  | 450          |
|            |        | CFW090600T3848 | 600               | 315                  | 500                  | 500          | 600              | 315                  | 500                  | 500          |



## CFW-09 - Tablas de Selección

## Tensión del Motor 525Vca / 690Vca:

|           |       |                | Par               | IE           | :C           | NEMA         | Par              | IE           | EC .         | NEMA         |
|-----------|-------|----------------|-------------------|--------------|--------------|--------------|------------------|--------------|--------------|--------------|
| AI.       | .,    |                | Constante<br>(CT) | 50Hz<br>525V | 50Hz<br>690V | 60Hz<br>575V | Variable<br>(VT) | 50Hz<br>525V | 50Hz<br>690V | 60Hz<br>575V |
| Aliment   | acion | Modelo         | Α                 | kW           | kW           | HP           | Α                | kW           | kW           | HP           |
|           |       | CFW090002T5060 | 2.9               | 1.5          | -            | 2            | 4.2              | 2.2          | -            | 3            |
|           |       | CFW090004T5060 | 4.2               | 2.2          | -            | 3            | 7                | 4            | -            | 5            |
|           |       | CFW090007T5060 | 7                 | 4            | -            | 5            | 10               | 5.5          | -            | 7.5          |
|           |       | CFW090010T5060 | 10                | 5.5          | -            | 7.5          | 12               | 7.5          | -            | 10           |
|           |       | CFW090012T5060 | 12                | 7.5          | -            | 10           | 14               | 9.2          | -            | 10           |
| 500-600 V |       | CFW090014T5060 | 14                | 9.2          | -            | 10           | 14               | 9.2          | -            | 10           |
| 09-       | 30    | CFW090022T5060 | 22                | 15           | -            | 20           | 27               | 18.5         | -            | 25           |
| 200       |       | CFW090027T5060 | 27                | 18.5         | -            | 25           | 32               | 22           | -            | 30           |
|           |       | CFW090032T5060 | 32                | 22           | -            | 30           | 32               | 22           | -            | 30           |
|           |       | CFW090044T5060 | 44                | 30           | -            | 40           | 53               | 37           | -            | 50           |
|           |       | CFW090053T5060 | 53                | 37           | -            | 50           | 63               | 45           | -            | 60           |
|           |       | CFW090063T5060 | 63                | 45           | -            | 60           | 79               | 55           | -            | 75           |
|           |       | CFW090079T5060 | 79                | 55           | -            | 75           | 99               | 55           | -            | 100          |
|           |       | CFW090107T5069 | 107               | 75           | 90           | 100          | 147              | 90           | 110          | 150          |
|           |       | CFW090147T5069 | 147               | 90           | 110          | 150          | 196              | 132          | 160          | 200          |
| >         |       | CFW090211T5069 | 211               | 132          | 160          | 200          | 211              | 132          | 160          | 200          |
| 200-690 V | 3Ø    | CFW090247T5069 | 247               | 160          | 220          | 250          | 315              | 220          | 250          | 300          |
| 06        | က     | CFW090315T5069 | 315               | 220          | 250          | 300          | 343              | 250          | 280          | 350          |
| 2(        |       | CFW090343T5069 | 343               | 250          | 280          | 350          | 418              | 300          | 315          | 450          |
|           |       | CFW090418T5069 | 418               | 300          | 315          | 450          | 472              | 315          | 400          | 500          |
|           |       | CFW090472T5069 | 472               | 315          | 400          | 500          | 555              | 400          | 400          | 600          |
|           |       | CFW090100T6669 | 100               | -            | 90           | -            | 127              | -            | 110          | -            |
|           |       | CFW090127T6669 | 127               | -            | 110          | -            | 179              | -            | 160          | -            |
| >         |       | CFW090179T6669 | 179               | -            | 160          | -            | 179              | -            | 160          | -            |
| V 069-099 | 3Ø    | CFW090225T6669 | 225               | -            | 220          | -            | 259              | -            | 250          | -            |
| 90-(      | က     | CFW090259T6669 | 259               | -            | 250          | -            | 305              | -            | 280          | -            |
| 99        |       | CFW090305T6669 | 305               | -            | 280          | -            | 340              | -            | 315          | -            |
|           |       | CFW090340T6669 | 340               | -            | 315          | -            | 428              | -            | 400          | -            |
|           |       | CFW090428T6669 | 428               | -            | 400          | -            | 428              | -            | 400          | -            |



## CFW-09 - Tabla de Especificación

|                                  |        |                 | NEMA 1 / IP20          |                |                |        |                | NEMA 4X / IP5          | 6             |                |                |
|----------------------------------|--------|-----------------|------------------------|----------------|----------------|--------|----------------|------------------------|---------------|----------------|----------------|
| Modelo                           | Tamaño |                 | Dimensiones<br>mm (in) |                | Peso           | Tamaño |                | Dimensiones<br>mm (in) |               | Peso           | Transistor de  |
| ouolo                            | Tamano | Alto            | Ancho                  | Prof.          | kg (lb)        | Tamano | Alto           | Ancho                  | Prof.         | kg (lb)        | Frenado        |
| CFW090006T2223                   |        |                 |                        |                |                |        | 200            | 004                    | 201           | 10.0           |                |
| CFW090007T2223                   | 1      | 210             | 143                    | 196            | 3.5            | 1      | 360<br>(14.17) | 234<br>(9.21)          | 221<br>(8.70) | 12.2<br>(26.9) |                |
| CFW090010T2223                   |        | (8.27)          | (5.63)                 | (7.72)         | (7.7)          |        | ()             | (0.2.)                 | (0.7.0)       | (20.0)         |                |
| CFW090013T2223                   |        |                 |                        |                |                |        | 410            | 280                    | 221           | 17.3           | Estándar       |
| CFW090016T2223                   |        |                 |                        |                |                | 2      | (16.14)        | (11.02)                | (8.70)        | (38.1)         | Lotarida       |
| CFW090024T2223                   | 2      | 290             | 182                    | 196            | 6              |        |                |                        |               |                |                |
| CFW090028T2223                   |        | (11.42)         | (7.16)                 | (7.72)         | (13.2)         | -      | -              | -                      | -             | -              |                |
| CFW090033T2223<br>CFW090038T2223 |        | 200             | 000                    | 074            | 10             |        |                |                        |               |                |                |
| CFW09003812223                   | 3      | 390<br>(15.35)  | (8.78)                 | 274<br>(10.79) | 19<br>(41.9)   |        |                |                        |               |                |                |
|                                  |        | 475             | 250                    | 274            | 22.5           |        |                |                        |               |                |                |
| CFW090054T2223                   | 4      | (18.70)         | (9.84)                 | (10.79)        | (49.6)         |        |                |                        |               |                |                |
| CFW090070T2223                   |        | 550             | 335                    | 274            | 41             | -      | -              | -                      | -             | -              | Opcional       |
| CFW090086T2223                   | 5      | (21.65)         | (13.19)                | (10.79)        | (90.4)         |        |                |                        |               |                |                |
| CFW090105T2223                   | 6      | 675             | 335                    | 300            | 55             |        |                |                        |               |                |                |
| CFW090130T2223                   | 6      | (26.57)         | (13.19)                | (11.81)        | (121.3)        |        |                |                        |               |                |                |
| CFW090142T2223                   | 7      | 835             | 335                    | 300            | 70             |        |                |                        |               |                |                |
|                                  | ,      | (32.87)         | (13.19)                | (11.81)        | (154.3)        |        |                |                        |               |                |                |
| CFW090180T2223                   | 8      | 975             | 410                    | 370            | 100            | _      | -              | -                      | _             | -              | Modulo Externo |
| CFW090240T2223                   |        | (38.38)         | (16.14)                | (14.57)        | (220.5)        |        |                |                        |               |                |                |
| CFW090361T2223                   | 9      | 1020<br>(40.16) | 688<br>(27.09)         | 492<br>(19.33) | 261<br>(476.2) |        |                |                        |               |                |                |
|                                  |        | (40.10)         | (27.09)                | (13.33)        | (470.2)        |        |                |                        |               |                |                |
| CFW090003T3848                   |        |                 |                        |                |                |        | 200            | 204                    | -04           | 40.0           |                |
| CFW090004T3848                   | 1      | 210             | 143                    | 196            | 3.5            | 1      | 360<br>(14.17) | 234<br>(9.21)          | (8.70)        | 12.2<br>(26.9) |                |
| CFW090005T3848                   |        | (8.27)          | (5.63)                 | (7.72)         | (7.7)          |        | ()             | (0.2.)                 | (0.70)        | (20.0)         |                |
| CFW090009T3848                   |        |                 |                        |                |                |        | 410            | 280                    | 221           | 17.3           |                |
| CFW090013T3848                   | _      | 290             | 182                    | 196            | 6              | 2      | (16.14)        | (11.02)                | (8.70)        | (38.1)         | Estándar       |
| CFW090016T3848<br>CFW090024T3848 | 2      | (11.42)         | (7.16)                 | (7.72)         | (13.2)         |        |                |                        |               |                |                |
| GFW09002413040                   |        | 390             | 223                    | 274            | 19             | _      | _              | _                      | _             | _              |                |
| CFW090030T3848                   | 3      | (15.35)         | (8.78)                 | (10.79)        | (41.9)         |        |                |                        |               |                |                |
| CFW090038T3848                   |        | 475             | 250                    | 274            | 22.5           |        |                |                        |               |                |                |
| CFW090045T3848                   | 4      | (18.70)         | (9.84)                 | (10.79)        | (49.6)         |        |                |                        |               |                |                |
| CFW090060T3848                   | 5      | 550             | 335                    | 274            | 41             |        |                |                        |               |                |                |
| CFW090070T3848                   | 5      | (21.65)         | (13.19)                | (10.79)        | (90.4)         | _      | _              |                        | _             | _              | Opcional       |
| CFW090086T3848                   | 6      | 675             | 335                    | 300            | 55             | _      | -              | -                      | -             | _              | Орсіонаі       |
| CFW090105T3848                   |        | (26.57)         | (13.19)                | (11.81)        | (121.3)        |        |                |                        |               |                |                |
| CFW090142T3848                   | 7      | 835             | 335                    | 300            | 70             |        |                |                        |               |                |                |
| CEW/000190T2949                  |        | (32.87)         | (13.19)                | (11.81)        | (154.3)        |        |                |                        |               |                |                |
| CFW090180T3848<br>CFW090211T3848 | 8      | 975             | 410                    | 370            | 100            |        |                |                        |               |                |                |
| CFW09021113848                   | 0      | (38.38)         | (16.14)                | (14.57)        | (220.5)        |        |                |                        |               |                |                |
| CFW090312T3848                   |        | 1020            | 688                    | 492            | 261            |        |                |                        |               |                |                |
| CFW090361T3848                   | 9      | (40.16)         | (27.09)                | (19.33)        | (476.2)        | -      | -              | -                      | -             | -              | Modulo Externo |
| CFW090450T3848                   |        | 4405            | 700                    | 400            | 050            |        |                |                        |               |                |                |
| CFW090515T3848                   | 10     | 1185<br>(46.65) | 700<br>(27.56)         | 492<br>(19.33) | 259<br>(571.0) |        |                |                        |               |                |                |
| CFW090600T3848                   |        | (10.00)         | (=7.00)                | (10.00)        | (0.1.0)        |        |                |                        |               |                |                |
| CFW090002T5060                   |        |                 |                        |                |                |        |                |                        |               |                |                |
| CFW090004T5060                   |        |                 |                        |                |                |        |                |                        |               |                |                |
| CFW090007T5060                   | 2      | 290             | 182                    | 196            | 6 (12.2)       | -      | -              | -                      | -             | -              | Estándar       |
| CFW090010T5060<br>CFW090012T5060 |        | (11.42)         | (7.16)                 | (7.72)         | (13.2)         |        |                |                        |               |                |                |
| CFW09001215060<br>CFW090014T5060 |        |                 |                        |                |                |        |                |                        |               |                |                |
| CFW09001415060<br>CFW090022T5060 |        |                 |                        |                |                |        |                |                        |               |                |                |
| CFW090022T5060                   | 4      | 475             | 250                    | 274            | 22.5           |        |                |                        |               |                |                |
| CFW090032T5060                   | •      | (18.70)         | (9.84)                 | (10.79)        | (49.6)         |        |                |                        |               |                |                |
| CFW090044T5060                   |        |                 |                        |                |                | -      | -              | -                      | -             | -              | Opcional       |
| CFW090053T5060                   | _      | 835             | 335                    | 300            | 70             |        |                |                        |               |                |                |
| CFW090063T5060                   | 7      | (32.87)         | (13.19)                | (11.81)        | (154.3)        |        |                |                        |               |                |                |
| CFW090079T5060                   |        |                 |                        |                |                |        |                |                        |               |                |                |
|                                  |        |                 |                        |                |                |        |                |                        |               |                |                |

CT- Par Constante: Capacidad de sobrecarga de 150% durante 60 seg. y 180% durante 1 seg. VT- Par Variable: Capacidad de sobrecarga de 110% durante 60 seg. y 150% durante 1 seg.

En la alimentación 500-690Vca los modelos con tensión superior a 660Vca deben tener una reducción en la corriente de salida para los modelos 660-690Vca (Ej.: CFW090107T5069SSZ con valor 107A(CT) / 147A(VT) en 575Vca, más corresponde a 100A(CT) / 127A(VT) en 660Vca).

## CFW-09 - Tabla de Especificación

|                |        |                 | NEMA 1 / IP20  | )               |                |
|----------------|--------|-----------------|----------------|-----------------|----------------|
| Modelo         | Tamaño |                 |                | Peso<br>kg (lb) |                |
|                |        | Alto            | Ancho          | Prof.           | ing (ib)       |
| CFW090107T5069 |        |                 |                |                 |                |
| CFW090147T5069 | 8E     | 1145<br>(45.08) | 410<br>(16.14) | 370<br>(14.57)  | 115<br>(253.5) |
| CFW090211T5069 |        | (40.00)         | (10.14)        | (14.07)         | (200.0)        |
| CFW090247T5069 |        |                 |                |                 |                |
| CFW090315T5069 |        |                 |                |                 |                |
| CFW090343T5069 | 10E    | 1185<br>(46.65) | 700<br>(27.56) | 582<br>(22.91)  | 310<br>(683.4) |
| CFW090418T5069 |        | (40.00)         | (27.00)        | (22.51)         | (003.4)        |
| CFW090472T5069 |        |                 |                |                 |                |
| CFW090100T6669 |        |                 |                | 370<br>(14.57)  |                |
| CFW090127T6669 | 8E     | 1145<br>(45.08) | 410<br>(16.14) |                 | 115<br>(253.5) |
| CFW090179T6669 |        | (40.00)         | (10.14)        | (14.57)         | (200.0)        |
| CFW090225T6669 |        |                 |                |                 |                |
| CFW090259T6669 |        |                 |                |                 |                |
| CFW090305T6669 | 10E    | 1185<br>(46.65) | 700<br>(27.56) | 582<br>(22.01)  | 310<br>(683.4) |
| CFW090340T6669 |        | (40.03)         | (21.30)        | (22.91)         | (003.4)        |
| CFW090428T6669 |        |                 |                |                 |                |

|        | ľ    | NEMA 4X / IP5          | 6     |                 |                          |
|--------|------|------------------------|-------|-----------------|--------------------------|
| Tamaño |      | Dimensiones<br>mm (in) |       | Peso<br>kg (lb) | Transistor de<br>Frenado |
|        | Alto | Ancho                  | Prof. | Kg (ID)         | Trenado                  |
|        |      |                        |       |                 |                          |
| -      | -    | -                      | -     | -               | Modulo Externo           |
| -      | -    | -                      | -     | -               | Modulo Externo           |

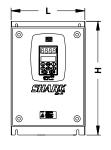
## CFW-09 Shark

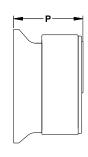
La serie de Convertidores de Frecuencia CFW-09 SHARK presenta grado de protección NEMA 4X / IP56 y ha sida diseñada para aplicaciones en ambientes altamente agresivos:

- Industria Química
- Petroquímica
- Industria Alimentaria
- Otras aplicaciones que requieran la total protección del equipo.



|                   | Con                      | vertidor CFW-0        | 9                    |     |                | MÁXIMO MOTOR APLI | CABLE <sub>①</sub>     |        |  |
|-------------------|--------------------------|-----------------------|----------------------|-----|----------------|-------------------|------------------------|--------|--|
| Tension<br>de red | Modelo Estándar<br>CFW09 | Frenado<br>Reostático | Corriente<br>de Sali |     | Tensión<br>(V) |                   | / Variable (VT*)<br>ar | Tamaño |  |
|                   | G. 1166                  | 11000144100           | CT*                  | VT* | (-)            | HP                | kW                     |        |  |
| 0                 | 0006 T 2223 P 0 N4 Z     | Estándar              | 6                    | 3   |                | 1,5               | 1,1                    |        |  |
| -230              | 0007 T 2223 P 0 N4 Z     | incorporada en        | 7                    | 7   | 220            | 2                 | 1,5                    | 1      |  |
| 220.              | 0010 T 2223 P 0 N4 Z     | el producto           | 10<br>16             |     | 10             | 220               | 3                      | 2,2    |  |
| .,                | 0016 T 2223 P 0 N4 Z     | ei producto           |                      |     |                | 5                 | 3,7                    | 2      |  |
|                   | 0003 T 3848 P 0 N4 Z     |                       | 3,                   | ,6  |                | 1,5               | 1,1                    |        |  |
| _                 | 0004 T 3848 P 0 N4 Z     | Estándar              | 4                    | 1   |                | 2                 | 1,5                    | 1      |  |
| -480              | 0005 T 3848 P 0 N4 Z     | incorporada en        | 5,                   | ,5  | 380            | 3                 | 2,2                    |        |  |
| 380-              | 0009 T 3848 P 0 N4 Z     | el producto           | 9                    | )   |                | 5                 | 3,7                    |        |  |
| 3                 | 0013 T 3848 P 0 N4 Z     | or producto           | 1                    | 13  |                | 7,5               | 5,5                    | 2      |  |
|                   | 0016 T 3848 P 0 N4 Z     |                       | 1                    | 6   |                | 10                | 7,5                    |        |  |


<sup>\*</sup>CT = Par Constante ( T carga = CTE ); VT = Par Variable ( Ej.: Par Cuadrático => T carga ~ n2 )


## ¡Notas!

1) Las máximas potencias de los motores aplicables en la tabla fueron calculadas para motores WEG de 2 y 4 polos. Para motores de otras polaridades (Ej.: 6 y 8 polos), otras tensiones (Ej.: 230, 400 o 460Vca) y/u otros proveedores, por favor especificar el convertidor de frecuencia a través de la corriente nominal del motor;

2) Los modelos 6, 7 y 10A / 230Vca pueden ser alimentados a través de una red monofásica sin reducción de la corriente nominal del equipo.

## Dimensiones y Peso





## **NEMA 4X / IP 56**

| Tamaño | Ancho<br>mm (in) | Altura<br>mm (in) | Profundidad<br>mm ( in ) | Peso<br>lb ( kg ) |
|--------|------------------|-------------------|--------------------------|-------------------|
| 1      | 234 (9.2)        | 360 (14.2)        | 221 (8.5)                | 10 (22)           |
| 2      | 280 (10.2)       | 410 (16.2)        | 221 (0.3)                | 15 (33)           |



## CFW-09 - Especificación del Código

| CFW09 | 0016 | T | 3848 | Р | 0 |   |   |   |    |    |    |    | Z  |
|-------|------|---|------|---|---|---|---|---|----|----|----|----|----|
| 1     | 2    | 3 | 4    | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |

- 1 Convertidor de Frecuencia WEG CFW-09
- 2 Corriente nominal de salida para par constante (CT)
- 3 Número de Fases de la Alimentación de Entrada: T= Trifásica

4 - Tensión de Red: 2223 = 220 ... 230 Vca

3848 = 380 ... 480 Vca 5060 = 500 ... 600 Vca 6669 = 660 ... 690 Vca

5 - Idioma del Manual: P = Portugués

E = Inglés S = Español F = Francés G = Alemán R = RusoSw = Sueco

6 - Opcionales: S = Estándar (sin opcionales)

O = Con Opcionales

7 - Grado de protección:00 = Estándar

N4 = NEMA 4x IP56 (modelos hasta 10hp/7.5kW)

8 - Interfaz Hombre Máquina (HMI):

En Blanco= Estándar (Con HMI de LED's + LCD)

SI = Sin HMI

IL = Solamente con HMI de LED's

9 - Frenado Reostático: En Blanco = Estándar

DB = con transistor para frenado reostático incorporado

RB = Unidad rectificadora regenerativa (modelos a partir

de 105A en la tensión 220V y a partir de 86A en las tensiones 380-480V)

10 - Tarjetas de expansión:

En Blanco = Estándar B5 = Tarjeta EBB . 05-CFW09 A1 = Tarjeta EBA . 01-CFW09 C1 = Tarjeta EBC1.01 - CFW09 A2 = Tarjeta EBA . 02-CFW09 A3 = Tarjeta EBA . 03-CFW09 C2 = Tarjeta EBC1.02 - CFW09 C3 = Tarjeta EBC1.03 - CFW09 B1 = Tarjeta EBB . 01-CFW09 E1 = Tarjeta EBE1.00 - CFW09

P1 = Tarjeta PLC1.01 B2 = Tarjeta EBB . 02-CFW09B3 = Tarjeta EBB . 03-CFW09 P2 = Tarjeta PLC2.00

B4 = Tarjeta EBB . 04-CFW09

11 - Tarjetas de Comunicación Fieldbus: En Blanco = Estándar (sin Kit Fieldbus)

PD = KFB-PD - Profibus DP V0 V1 = KFB-PDV1 - Profibus DPV1 DN = KFB-DN - DeviceNet

DD = KFB-DD - DeviceNet Drive Profile

EN = KFB-EN - Ethernet / IP

12 - Hardware especial: En Blanco = Estándar (sin hardware especial)

H1... Hn = Opcional con versión de hardware especial

HD = Modelos a partir de 105A en la tensión 220V y a partir de 86A en las tensiones 380-480V, poseen alimentación por el link CC

HC/HV = Los convertidores CFW09 de las mecánicas 2 hasta 8 disponen de una línea de inductores para el link CC ya incorporados al producto. Para solicitar el convertidor con el

inductor ya armado, solamente se debe añadir la codificación "HC" (para convertidores que trabajan en Par

220 - 230 Vca | 380 - 480 Vca

0004 = 4,0 A

0005 = 5,5 A

0009 = 9.0 A

0013 = 13 A

0016 = 16 A

0024 = 24 A

0030 = 30 A

0038 = 38 A

 $0045 = 45 \, A$ 

 $0060 = 60 \, A$ 

0070 = 70 A

0086 = 86 A

0105 = 105 A

0142 = 142 A

0180 = 180 A

0211 = 211 A

0240 = 240 A

0312 = 312 A

0361 = 361 A

 $0450 = 450 \, A$ 

0515 = 515 A

0600 = 600 A

 $0686 = 686 \, A$ 

 $0855 = 855 \,\mathrm{A}$ 

1140 = 1140 A

1283 = 1286 A

1710 = 1710 A

0006 = 6.0 A

0007 = 7.0 A

0010 = 10 A

0013 = 13 A

0016 = 16 A

0024 = 24 A

0028 = 28 A

0033 = 33 A

0038 = 38 A

0045 = 45 A

0054 = 54 A

0070 = 70 A

0086 = 86 A

0105 = 105 A

0130 = 130 A

0142 = 142 A

0180 = 180 A

0240 = 240 A

0361 = 361 A

500 - 600 Vca | 500 - 690 Vca | 660 - 690 Vca

0107 = 107 A

0147 = 147 A

0211 = 211 A

0247 = 247 A

0315 = 315 A

0343 = 343 A

0418 = 418 A

0472 = 472 A

0127 = 127 A

0179 = 179 A

0225 = 225 A

0259 = 259 A

0305 = 305 A

0340 = 340 A

0428 = 428 A

0002 = 2,9 A

0004 = 4,2 A

0007 = 7.0 A

0010 = 10 A

0012 =12 A

0014 =14 A

0022 = 22 A

0027 = 27 A

0032 = 32 A

0044 = 44 A0053 = 53 A

0063 = 63 A

0079 = 79A

0107 = 107A

0147 = 147A

0211 = 211A

0247 = 247A

0315 = 315A

0418 = 418A

0472 = 472A

0600 = 600A

0794 = 794A

0897 = 897A

0978 = 978A

1191 = 1191A

1345 = 1345A

Constante) o "HV" (para convertidores que trabajan en Par Variable).

13 - Software especial: En Blanco = Estándar (sin software especial)

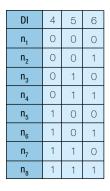
S1 ... Sn = Opcional con versión de software especial SF = Versión especial para comunicación Metasys N2

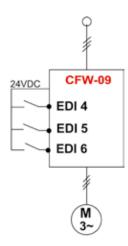
SC = Funciones para grúas

SN = Bobinadora I con cálculo de fuerza

Ejemplos:

CFW09 0013 T 2223 E S Z


CFW09 0105 T 3848 E O IL A1 PD Z CFW09 0086 T 3848 E O SI DB B2 S3Z


14 - Fin del Código

## CFW-09 - Funciones Especiales

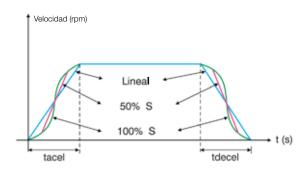
## **Multi-speed**

Permite seleccionar hasta 8 velocidades diferentes programadas por el usuario vía parámetro y seleccionadas a través de la combinación de 3 entradas digitales del convertidor. Estas entradas pueden ser accionadas por actuadores externos tales como: sensores finales de carrera, fotocélulas, sensores de proximidad, PLC, etc.



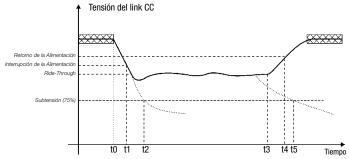


## **Regulador PID Superpuesto**


El controlador PID esta disponible como estándar en la serie CFW-09 y se aplica en los accionamientos que requieren el control de variables de procesos (Ej. Flujo, Presión, Nivel, etc). Para eso, el convertidor de frecuencia deberá tener una consigna (programada por el usuario) y recibir una señal de realimentación del sensor externo que mide la variable del proceso y cierra el lazo de control.

Esta función elimina la necesidad de un controlador PID externo proporcionando así un economía adicional en los procesos que necesitan del control de variables de procesos de modo automático.



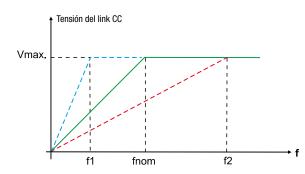

#### Rampa "S"

Esta función permite al usuario substituir las convencionales rampas de aceleración y de desaceleración "lineales" por rampas tipo "S". Las rampas tipo "S" proporcionan al motor y a la carga mayor suavidad en los arranques/paradas y en los momentos de aproximación a la velocidad ajustada. Este recurso permite evitar los golpes mecánicos al inicio y al fin de las rampas que suceden en algunas máquinas / procesos.





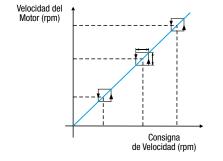
## Funciones Especiales




- t0: Interrupción de la alimentación
- t1: Detección de la interrupción de la alimentación
- t2: Actuación de la subtensión (E02 sin Ride-Through)
- t3: Retorno de la alimentación
- t4: Detección del retorno de la alimentación
- t5: Actuación de la subtensión (E02 con Ride-Through)

## **Ride-Through**

La función Ride-Through hace que el convertidor de frecuencia mantenga el eje del motor girando en situaciones de interrupción de alimentación sin bloqueo o memorización de fallo. La energía necesaria para la manutención del conjunto en funcionamiento es obtenida de la energía cinética del motor (inercia) a través de la desaceleración del mismo.


En el momento que la alimentación del convertidor de frecuencia es restablecida el motor es reacelerado automáticamente hasta la velocidad definida por la consigna de referencia.



## Curva V/F Ajustable

La modificación de la curva V/F estándar permite accionar motores especiales con frecuencias nominales diferentes de la frecuencia de la red (ej.: motores de 200Hz).

En estos casos, esta función permite al usuario mover la frecuencia base (aquella en la cual el convertidor de frecuencia impone la tensión nominal al motor) a una frecuencia superior o inferior a las frecuencias convencionales (50 o 60Hz).



## Rechazo de Frecuencia Críticas

Esta función impide que el motor opere en determinadas velocidades críticas responsables de provocar resonancia en el sistema mecánico (motor/carga), vibraciones y ruidos indeseables.

Se puede programar hasta 3 puntos de rechazo de velocidades críticas independientes, así como la variación de velocidad (Delta V) al entorno de estos puntos.

## **CFW-10**

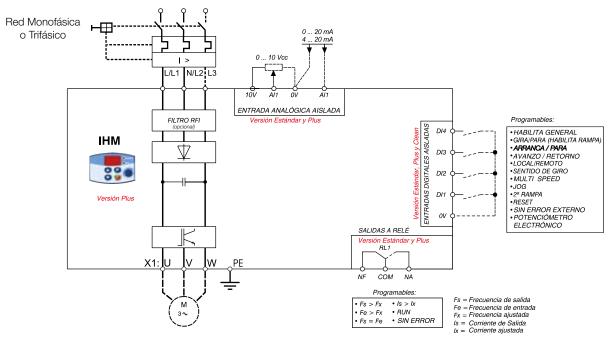
La línea de Convertidore de Frecuencia CFW-10 esta diseñada para el control y para la variación de velocidad de motores eléctricos de inducción trifásicos. Los CFW-10 incorporan alta tecnología y se destacan por su pequeño tamaño y gran facilidad de programación.

Asimismo, los CFW-10 son compactos, simples de instalar y de operar a través de su interfaz hombre máquina (HMI) local incorporada como estándar.



## Beneficios

- Control V/F
- Grado de Protección IP20
- Monofásico tensión de entrada 110-127Vca hasta 0.75kw / 1 HP
- Monofásico tensión de entrada 200-240Vca hasta 2.2kw / 3 HP
- Trifásico tensión de entrada 200-240Vca hasta 4kW / 5 HP
- 150% de capacidad de sobrecarga de corriente
- Control DSP salida PWM
- Frecuencia de conmutación ajustable 2.5 15Hz
- 4 entradas digitales programables aisladas
- Salida a relé programable
- Una entrada analógica programable aislada
- Protecciones del Motor y del VSD: Sobrecorriente, sobrecarga del motor, sobretemperatura del convertidor, cortocircuito en la salida, sobretensión y subtensión del conductor CC y fallo externo.
- Características de control: aceleración y desaceleración de rampa lineal y "S", control local/remoto, frenado CC, aceleración de par, compensación de deslizamiento del motor, velocidades pre ajustables, limites de frecuencia ajustables máximos y mínimos, limite de corriente de salida ajustable, JOG.
- Lecturas en el display: velocidad del motor, frecuencia, tensión, corriente, último fallo, temperatura del disipador y estado del convertidor.
- Condiciones Ambientales: 50°C (122°F), 1000m (3300ft) y 90% de humedad sin condensación.






# Diagrama de Bloques

## **Aplicaciones**

- Bombas centrífugas
- Bombas dosificadoras de proceso
- Ventiladores / Extractores
- Extrusoras Mesas de rodillos
- Agitadores /
- Secadores
- Filtros rotativos Mezcladores





## CFW-10 - Especificación del Código



#### 1 - Convertidor de Frecuencia WEG CFW-10

## 2 - Corriente Nominal de Salida:

| 110- | 127 V | 200-2 | 240 V |
|------|-------|-------|-------|
| 0016 | 1,6 A | 0016  | 1,6A  |
| 0026 | 2,6 A | 0026  | 2,6A  |
| 0040 | 4,0 A | 0040  | 4,0A  |
|      |       | 0073  | 7,3A  |
|      |       | 0100  | 10,0A |
|      |       | 0152  | 15,2A |

solamente para el modelo trifásico

#### 3 - Numero de Fases

S = monofásico T = trifásico

#### 4- Tensión de Red

1112 = 110-127 Vca (Solamente Monofásico) 2024 = 200-240 Vca

#### 5 -Idioma del Manual

P = Portugués

E = inglés

S = Español

## 6 - Opcionales

S = Estándar (sin opcionales)

O = Con opcionales

## 7 - Tarjeta de Control

En blanco = Estándar

CL = Versión Clean (sin entrada analógica y sin salida a relé)

PL = Versión Plus (con potenciómetro incorporado)

#### 8- Filtro EMC incorporado

En blanco = Estándar

FA = Con filtro EMC Clase A (solamente para los modelos monofásicos 200-240Vca)

## 9 - Hardware Especial

En blanco = Estándar (sin hardware especial)

Hx = hardware especial versión X

CP = Versión Especial de Disipador (Cold Plate)

## 10 - Software Especial

En blanco = Estándar (sin software especial)

Sx = software especial versión X

## 11 - Fin del Código

Ex.: CFW100040S2024ESZ

Convertidor de Frecuencia Serie CFW-10 de 4.0A, monofásico en 200-240Vca, manual en español.

## CFW-10 - Tabla de Especificación

La forma correcta para especificar un Convertidor de Frecuencia es seleccionar un equipo que pueda suministrar como mínimo la corriente nominal del motor. Las tablas siguientes indican las potencias de motores correspondiente a cada modelo de Convertidor de Frecuencia.

Los valores de las potencias de motores son solamente como referencia. Las corrientes nominales pueden variar según la velocidad y el fabricante. Las potencias de los motores IEC están basadas en motores WEG de 4 polos; las potencias de los motores NEMA están basadas en la tabla NEC 430-150.

NEMA

IEC

NEMA

## Tensión del Motor 110Vca/127Vca y 220Vca/230Vca:

| Corriente Alimentación Modelo Salida |       |                |      |      | 60Hz<br>230V |
|--------------------------------------|-------|----------------|------|------|--------------|
| rumonacion                           |       |                | Α    | kW   | HP           |
| 2                                    | 10    | CFW100016S1112 | 1.6  | 0.25 | -            |
| 110-127V                             |       | CFW100026S1112 | 2.6  | 0.55 | 0.5          |
| =                                    |       | CFW100040S1112 | 4    | 0.75 | 0.75         |
|                                      | 10/30 | CFW100016S2024 | 1.6  | 0.25 | -            |
|                                      |       | CFW100026S2024 | 2.6  | 0.55 | 0.5          |
|                                      |       | CFW100040S2024 | 4    | 0.75 | 0.75         |
|                                      |       | CFW100073S2024 | 7.3  | 1.5  | 2            |
| ۸٥                                   |       | CFW100100S2024 | 10   | 2.2  | 3            |
| 220-230 V                            | 30    | CFW100016T2024 | 1.6  | 0.25 | -            |
| 220                                  |       | CFW100026T2024 | 2.6  | 0.55 | 0.5          |
|                                      |       | CFW100040T2024 | 4    | 0.75 | 0.75         |
|                                      |       | CFW100073T2024 | 7.3  | 1.5  | 2            |
|                                      |       | CFW100100T2024 | 10   | 2.2  | 3            |
|                                      |       | CFW100152T2024 | 15.2 | 4    | 5            |

## CFW-10 - Tabla de Especificación - Versión "Cold Plate"

## Tensión del Motor 110Vca/127Vca y 220Vca/230Vca:

|              | 50Hz<br>220V | 60Hz<br>230V        |        |      |      |
|--------------|--------------|---------------------|--------|------|------|
| Alimentación |              | Modelo              | Salida | 230V | 2001 |
|              |              |                     | Α      | kW   | HP   |
| 2            | 10           | CFW100016S1112S0CPZ | 1.6    | 0.25 | -    |
| 110-127V     |              | CFW100026S1112S0CPZ | 2.6    | 0.55 | 0.5  |
| Ė            |              | CFW100040S1112S0CPZ | 4      | 0.75 | 0.75 |
|              | 10/30        | CFW100016S2024S0CPZ | 1.6    | 0.25 | -    |
|              |              | CFW100026S2024S0CPZ | 2.6    | 0.55 | 0.5  |
|              |              | CFW100040S2024S0CPZ | 4      | 0.75 | 0.75 |
|              |              | CFW100073S2024S0CPZ | 7.3    | 1.5  | 2    |
| ۸0           |              | CFW100100S2024S0CPZ | 10     | 2.2  | 3    |
| 220-230 V    | Ø8           | CFW100016T2024S0CPZ | 1.6    | 0.25 | -    |
| 22(          |              | CFW100026T2024S0CPZ | 2.6    | 0.55 | 0.5  |
|              |              | CFW100040T2024S0CPZ | 4      | 0.75 | 0.75 |
|              |              | CFW100073T2024S0CPZ | 7.3    | 1.5  | 2    |
|              |              | CFW100100T2024S0CPZ | 10     | 2.2  | 3    |
|              |              | CFW100152T2024S0CPZ | 15.2   | 4    | 5    |



## CFW-10 - Tabla de Características

|                | Versión Estándar |                             |               |                 |               | Versión Cold Plate     |               |                 |                       |               |    |
|----------------|------------------|-----------------------------|---------------|-----------------|---------------|------------------------|---------------|-----------------|-----------------------|---------------|----|
| Modelo         | Tamaño           | Dimensiones<br>mm (in)      |               | Peso<br>kg (lb) | Tamaño        | Dimensiones<br>mm (in) |               | Peso<br>kg (lb) | Transistor de Frenado |               |    |
|                |                  | Alto                        | Ancho         | Prof.           | 1.9 ()        | 9 ()                   | Alto          | Ancho           | Prof.                 | 1.9 ()        |    |
| CFW100016S1112 | 1                | 95                          | 132           | 121             | 0.9           | 1                      | 95            | 132             | 82                    | 0.7           | No |
| CFW100026S1112 |                  | (3.74)                      | (5.20)        | (4.76)          | (1.98)        |                        | (3.74)        | (5.20)          | (3.23)                | (1.54)        |    |
| CFW100040S1112 | 2                | 115<br>(4.53)               | 161<br>(6.34) | 122<br>(4.80)   | 1.5<br>(3.31) | 2                      | 115<br>(4.53) | 161<br>(6.34)   | 82<br>(3.23)          | 1.0<br>(2.20) | Sí |
| CFW100016S2024 |                  |                             |               |                 |               |                        |               |                 |                       |               |    |
| CFW100026S2024 | 1                | 95                          | 132           | 121             | 0.9<br>(1.98) | 1                      | 95            | 132             | 82                    | 0.7           | No |
| CFW100040S2024 |                  | (3.74) (5.20                | (5.20)        | (4.76)          | (1.96)        |                        | (3.74)        | (5.20)          | (3.23)                | (1.54)        |    |
| CFW100073S2024 | 2                | 115<br>(4.53)               | 161<br>(6.34) | 122<br>(4.80)   | 1.5<br>(3.31) | 2                      | 115<br>(4.53) | 161<br>(6.34)   | 82<br>(3.23)          | 1.0<br>(2.20) | Sí |
| CFW100100S2024 | 3                | 115<br>(4.53)               | 191<br>(7.52) | 122<br>(4.80)   | 1.8<br>(3.96) | 3                      | 115<br>(4.53) | 191<br>(7.52)   | 82<br>(3.23)          | 1.2<br>(2.65) | 21 |
| CFW100016T2024 |                  |                             |               |                 |               |                        |               |                 |                       |               |    |
| CFW100026T2024 |                  | 95                          | 132           | 121             | 0.9           |                        | 95            | 132             | 82                    | 0.7           |    |
| CFW100040T2024 | 1                | (0.74) (5.00) (4.70) (4.00) |               | 1               | 1 (3.74)      | (5.20) (3.23)          | (1.54)        | No              |                       |               |    |
| CFW100073T2024 |                  |                             |               |                 |               |                        |               |                 |                       |               |    |
| CFW100100T2024 | 2                | 115<br>(4.53)               | 161<br>(6.34) | 122<br>(4.80)   | 1.5<br>(3.31) | 2                      | 115<br>(4.53) | 161<br>(6.34)   | 82<br>(3.23)          | 1.0<br>(2.20) | Sí |
| CFW100152T2024 | 3                | 115<br>(4.53)               | 191<br>(7.52) | 122<br>(4.80)   | 1.8<br>(3.96) | 3                      | 115<br>(4.53) | 191<br>(7.52)   | 82<br>(3.23)          | 1.2<br>(2.65) | 21 |



## CFW-10 - Datos Tecnicos

| N                       | IODELO                          |                                                        | CFW-10 Estándar                                                                                                                                       | CFW-10 Clean                                     | CFW-10 Plus                                  |  |  |  |  |
|-------------------------|---------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------|--|--|--|--|
|                         |                                 | Monofásica                                             |                                                                                                                                                       | 110 - 127Vca (+10%, -15%)                        |                                              |  |  |  |  |
| ALIMENTACION            | Tensión                         | Monofásica<br>/Trifásica                               | 200 - 240Vca (+10%, -15%)                                                                                                                             |                                                  |                                              |  |  |  |  |
|                         | Fred                            | uencia                                                 | 5                                                                                                                                                     | 0 / 60 Hz +/- 2 Hz (48 - 62 Hz                   | z)                                           |  |  |  |  |
|                         | cos φ (Factor d                 | e desplazamiento)                                      |                                                                                                                                                       | > 0.98                                           | ,                                            |  |  |  |  |
| PROTECCION              | Grado de                        | Protección                                             |                                                                                                                                                       | IP 20                                            |                                              |  |  |  |  |
|                         | Tipo de a                       | limentación                                            |                                                                                                                                                       | Fuente Conmutada                                 |                                              |  |  |  |  |
|                         | Método                          | de control                                             | Modulación PWM sinusoidal                                                                                                                             | (Space Vector Modulation), V / F                 | lineal o cuadrática (escalar)                |  |  |  |  |
|                         | Frecuencia de Conmutación       |                                                        |                                                                                                                                                       | ncias ajustables de 2,5kHz hasta                 |                                              |  |  |  |  |
| CONTROL                 | Variación o                     | de frecuencia                                          |                                                                                                                                                       | 0 - 300 Hz                                       |                                              |  |  |  |  |
|                         | Resolución de frecuencia        |                                                        | Ref. Analógica: 0,1% de Frecuencia máx. y Ref. Digital: 0,01 Hz (f<100Hz); 0,1Hz (f>100Hz)                                                            |                                                  |                                              |  |  |  |  |
|                         | Acuracidad frecuencia salida    |                                                        | Ref. Analógica: 0,1% de l'recuencia max. y ner. Digital: 0,01112 (1<0012), 0,1112 (1>10012)                                                           |                                                  |                                              |  |  |  |  |
|                         | Sobrecarga admisible            |                                                        |                                                                                                                                                       | 150% durante 60 seg. a cada 10 min. (1,5 x lnom) |                                              |  |  |  |  |
|                         |                                 | lógicas                                                | 1 entrada aislada 010Vcc,                                                                                                                             |                                                  |                                              |  |  |  |  |
| ENTRADAS                |                                 | itales                                                 | 020 mA o 420 mA                                                                                                                                       | <br>tradas aisladas programables 12              | 020mA o 420mA                                |  |  |  |  |
|                         | Dig                             | nulto                                                  | 1 salida programable, 1                                                                                                                               | u auao aioiauao programabies 12                  | 1 salida programable, 1                      |  |  |  |  |
| SALIDAS                 | Relé                            |                                                        | contacto reversible (NO/NC)                                                                                                                           | -                                                | contacto reversible (NO/NC)                  |  |  |  |  |
|                         |                                 |                                                        |                                                                                                                                                       | nación: ls>lx; Fs>Fx; Fe>Fx; Fs=                 |                                              |  |  |  |  |
|                         |                                 |                                                        |                                                                                                                                                       | ón y subtensión en el circuito int               |                                              |  |  |  |  |
|                         |                                 |                                                        | 5                                                                                                                                                     | Sobretemperatura del Convertido                  | r                                            |  |  |  |  |
|                         |                                 |                                                        |                                                                                                                                                       | Sobrecorriente en la salida                      |                                              |  |  |  |  |
| SEGURIDAD               | Prote                           | cciones                                                |                                                                                                                                                       | Sobrecarga en el motor (i x t)                   |                                              |  |  |  |  |
|                         |                                 |                                                        | Error de hardware, defecto externo                                                                                                                    |                                                  |                                              |  |  |  |  |
|                         |                                 |                                                        | Cortocircuito en la salida                                                                                                                            |                                                  |                                              |  |  |  |  |
|                         |                                 |                                                        | Error de programación                                                                                                                                 |                                                  |                                              |  |  |  |  |
|                         |                                 |                                                        | Arranca / Para, Parametrización (Programación de Funciones Especiales)                                                                                |                                                  |                                              |  |  |  |  |
|                         | M                               | ando                                                   | Incrementa / Decrementa Parámetros, su contenido y la consiga de Velocidad                                                                            |                                                  |                                              |  |  |  |  |
|                         |                                 |                                                        | -                                                                                                                                                     | -                                                | Potenciómetro para<br>ajuste de la velocidad |  |  |  |  |
|                         |                                 |                                                        |                                                                                                                                                       | Frecuencia de salida (Hz)                        |                                              |  |  |  |  |
| INTERFAZ HOMBRE-MÁQUINA |                                 |                                                        | Tensión en el circuito intermediario (Vcc)                                                                                                            |                                                  |                                              |  |  |  |  |
| (HMI)                   |                                 |                                                        | Valor proporcional a la frecuencia (Ej. Tt/min)                                                                                                       |                                                  |                                              |  |  |  |  |
|                         | Supervisi                       | ión (lectura)                                          | Temperatura del disipador                                                                                                                             |                                                  |                                              |  |  |  |  |
|                         |                                 |                                                        | Corriente de salida al motor (A)                                                                                                                      |                                                  |                                              |  |  |  |  |
|                         |                                 |                                                        | Tensión de salida al motor (Vca)                                                                                                                      |                                                  |                                              |  |  |  |  |
|                         |                                 |                                                        | Mensaje de Errores / Defecto                                                                                                                          |                                                  |                                              |  |  |  |  |
|                         | Тетр                            | peratura                                               | Modelos hasta 10A: 050°C (32122°F) sin reducción en la corriente de salid<br>Modelos de 15,2A: 040°C (32104°F) sin reducción en la corriente de salid |                                                  |                                              |  |  |  |  |
| CONDICIONES AMBIENTE    | Hur                             | nedad                                                  |                                                                                                                                                       |                                                  |                                              |  |  |  |  |
|                         | Al                              | titud                                                  | 01000m (3300ft), hasta 400                                                                                                                            | 1% /100m (3% /1000ft) en la                      |                                              |  |  |  |  |
| TERMINACION             | С                               | olor                                                   | Gris                                                                                                                                                  | Fosco – Desarrollo WEG 205E1                     | 404                                          |  |  |  |  |
|                         | Compatibilidad Electromagnética |                                                        | EMC directiva 89 / 336 / EEC                                                                                                                          |                                                  |                                              |  |  |  |  |
| CONFORMIDAD/ NORMAS     |                                 |                                                        | EN 61800-3                                                                                                                                            |                                                  |                                              |  |  |  |  |
|                         | Baja                            | Tensión                                                | LVD 73/23/EEC- Directiva de Baja Tensión / UL508C                                                                                                     |                                                  |                                              |  |  |  |  |
|                         |                                 |                                                        | Interfaz Hombre Máquina Incorporada – Display LED's de 7 segmentos                                                                                    |                                                  |                                              |  |  |  |  |
|                         |                                 |                                                        | Contraseña para Habilitar la programación                                                                                                             |                                                  |                                              |  |  |  |  |
|                         |                                 |                                                        | Autodiagnóstico de defectos y Autoreset                                                                                                               |                                                  |                                              |  |  |  |  |
|                         |                                 | Compensación del Deslizamiento del motor (control V/F) |                                                                                                                                                       |                                                  |                                              |  |  |  |  |
|                         |                                 | I x R manual y automático                              |                                                                                                                                                       |                                                  |                                              |  |  |  |  |
| RECURSOS                | ECURSOS Estándar                |                                                        | Rampas de aceleración independientes tipo Lineal y S, doble rampa                                                                                     |                                                  |                                              |  |  |  |  |
|                         |                                 |                                                        |                                                                                                                                                       |                                                  | Función JOG                                  |  |  |  |  |
|                         |                                 |                                                        | Frenado CC                                                                                                                                            |                                                  |                                              |  |  |  |  |
|                         |                                 |                                                        | Función Multi-Speed (hasta 8 velocidades preprogramables)                                                                                             |                                                  |                                              |  |  |  |  |
|                         |                                 |                                                        | Selección del sentido de giro                                                                                                                         |                                                  |                                              |  |  |  |  |
|                         |                                 |                                                        | Selección para operación Local / Remoto                                                                                                               |                                                  |                                              |  |  |  |  |



## Convertidores de Frecuencia WEG: comparativo

|                     |                                                  | MODELOS                                                                                                                             |                                                                                                                                                                                                                |                                                        |  |  |  |
|---------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|
|                     |                                                  | CFW-08                                                                                                                              | CFW-09                                                                                                                                                                                                         | CFW-10                                                 |  |  |  |
|                     |                                                  |                                                                                                                                     |                                                                                                                                                                                                                | 110-127Vca (+10 %, -15%)                               |  |  |  |
| Alimentacíon        | Monofásica                                       | 200 - 240Vca (+10%, -15%)                                                                                                           |                                                                                                                                                                                                                | 200-240Vca (+10%, -15%)                                |  |  |  |
|                     |                                                  | 200 - 240Vca (+10%, -15%)                                                                                                           | 220 - 240Vca (+10%, - 15%)                                                                                                                                                                                     | 200-240Vca (+10%, -15%)                                |  |  |  |
|                     | Trifásica                                        | 380 - 480Vca (+10%, -15%)                                                                                                           | 380 - 480Vca (+10%, -15%)                                                                                                                                                                                      | -                                                      |  |  |  |
|                     |                                                  | 500 - 600Vca (+10%, -15%)                                                                                                           | 500 - 600Vca (+10%, -15%)                                                                                                                                                                                      | -                                                      |  |  |  |
|                     |                                                  | -                                                                                                                                   | -                                                                                                                                                                                                              |                                                        |  |  |  |
|                     | Frecuencia                                       |                                                                                                                                     |                                                                                                                                                                                                                |                                                        |  |  |  |
|                     | cos φ<br>(factor de<br>Displazamiento)           |                                                                                                                                     |                                                                                                                                                                                                                |                                                        |  |  |  |
|                     | Factor de potencia                               |                                                                                                                                     | -                                                                                                                                                                                                              |                                                        |  |  |  |
| Grado de protección | Convertidor                                      | NEMA1/IP20 en los tamaños 3 y 4 y<br>IP20 en los tamaños 1 y 2<br>NEMA 1 con kit de conexión con<br>electroducto metálico adicional | NEMA 1 / IP20: Tamaño 18E<br>IP20 Tamaño 910E                                                                                                                                                                  | IP20                                                   |  |  |  |
| protection:         | HMI Remota                                       | HMI Remota Paralela: NEMA12/IP54 HMI Remota Serial: NEMA12/IP54                                                                     | NEMA 4X / IP56                                                                                                                                                                                                 | -                                                      |  |  |  |
| Modo Montaje        | Montaje en Flange                                | Tamaño 2,3 y 4 Si                                                                                                                   |                                                                                                                                                                                                                | -                                                      |  |  |  |
|                     | Tipo de Alimentación                             |                                                                                                                                     | do de conmutación de la red de distribuc                                                                                                                                                                       | ión                                                    |  |  |  |
|                     |                                                  | V/F lineal o cuadrático                                                                                                             | V/F                                                                                                                                                                                                            |                                                        |  |  |  |
| Control             | Control tipo                                     | Control vectorial sensorless<br>(control vectorial de control WEG)                                                                  | VVW (Control de tensión vectorial – WEG) Sensorless vector (sin encoder) Vectorial con encoder                                                                                                                 | V/F lineal o cuadrático                                |  |  |  |
|                     | Frecuencia de<br>Commutación                     | 2.5 / 5.0 / 10 / 15 kHz                                                                                                             | 1.25/ 2.5 / 5.0 / 10 kHz                                                                                                                                                                                       | 2.5 a 15 kHz                                           |  |  |  |
|                     | Frecuencia de<br>Salida                          | 0 300 Hz                                                                                                                            | 0204Hz (Frecuencias disponibles 60Hz)<br>0170Hz (Frecuencias disponibles 50Hz)<br>Arriba de 204Hz (favor consultar WEG)                                                                                        | 0 300 Hz                                               |  |  |  |
|                     | Sobrecarga<br>Permitida                          | 150% durante 60 seg. Cada 10 minutos                                                                                                | CT: 150% durante 60 seg.<br>para cada 10 min.<br>VT: 110% durante 60 seg.<br>para cada 10 min.                                                                                                                 | 150% durante 60 seg.<br>para cada 10 min.              |  |  |  |
|                     | Eficiencia                                       | > 95%                                                                                                                               | > 97%                                                                                                                                                                                                          | > 95 %                                                 |  |  |  |
|                     | Control de                                       | 1% velocidad nominal con compensación de deslizamiento                                                                              | 1% velocidad nominal con compensaci-<br>ón de deslizamiento                                                                                                                                                    | 1% velocidad nominal con compensación de deslizamiento |  |  |  |
|                     | Velocidad V/F                                    | Resolución0.01 Hz (f<100Hz);<br>0.1 Hz(f<100Hz): Consigna via HMI                                                                   | Resolución; 1 rpm (referencia de teclado)<br>Rango de regulación = 1:20                                                                                                                                        | Resolución: 0.01 Hz (f<100Hz);                         |  |  |  |
|                     |                                                  |                                                                                                                                     | Regulación; 0.5% de la velocidad nominal.                                                                                                                                                                      | 0.1 Hz(f<100Hz): Consigna via HMI                      |  |  |  |
|                     | Control de<br>Velocidad VVW                      | Resolución: 1 rpm (consigna via HMI)                                                                                                | Resolución; 1 rpm (consigna via HMI)  Rango de regulación = 1:30                                                                                                                                               | -                                                      |  |  |  |
|                     | Control de<br>Velocidad Vectorial<br>Sensorless  | -                                                                                                                                   | Regulación; 0.5% de la velocidad nomina.<br>Resolución; 1 rpm (consigna via HMI)<br>Rango de regulación = 1:100                                                                                                | -                                                      |  |  |  |
|                     | Control de<br>Velocidad Vectorial<br>con Encoder | -                                                                                                                                   | Via consigna analogica 10 bits +/-0.1% de la velocidad nominal; via consigna analogica 14bits: +/-0.01% de la velocidad nominal; via HMI, Redes Fieldbus y Interfaz Digital: +/-0.01% de la velocidad nominal. | -                                                      |  |  |  |
|                     | Control de Par<br>(Torque)                       | -                                                                                                                                   | Ajuste: +/- 10% (sensorles) +/- 5%<br>(encoder) del par nominal del motor<br>Ajuste: 0150% (encoder)<br>del par nominal del motor                                                                              | -                                                      |  |  |  |



## Convertidores de Frecuencia WEG: comparativo

|              |                                    | MODELOS                                                    |                                                                      |                                                            |  |  |  |  |  |
|--------------|------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------|--|--|--|--|--|
|              |                                    | CFW-08                                                     | CFW-09                                                               | CFW-10                                                     |  |  |  |  |  |
|              |                                    | 4 entradas programables aisladas                           | 6 entradas programables, aisladas,                                   |                                                            |  |  |  |  |  |
|              |                                    | digitales con NPN o PNP lógico                             | bidireccionales, 24Vcc                                               |                                                            |  |  |  |  |  |
|              | Digital                            | Entradas a PTC aisladas via Al y Al2                       | 2 salidas con contactos reversos                                     | 4 entradas aisladas programables                           |  |  |  |  |  |
|              |                                    | Entradas programables aisladas vía Al1 y                   | NO/NC y 1 salida con contacto NO,                                    |                                                            |  |  |  |  |  |
|              |                                    | Al2 con NPN o PNP lógico (DI5 y DI6)                       |                                                                      |                                                            |  |  |  |  |  |
|              | Relé                               | 2 salidas a relé programables,                             | 2 salidas programables, contactos                                    | 1 salida programable, contactos                            |  |  |  |  |  |
| Entradas y   |                                    | contactos reversibles (NO/NC)                              | NO/NC                                                                | reversos NO/NC                                             |  |  |  |  |  |
| salidas      |                                    | 2 entradas analógicas aisladas                             | 2 entradas diferenciales programables                                |                                                            |  |  |  |  |  |
|              |                                    | 010Vcc/ 420mA / -1010Vcc; 8 bits                           | 10 bits                                                              |                                                            |  |  |  |  |  |
|              |                                    |                                                            | 2 salidas programables, 11 bits<br>2 salidas programables bipolares  | 1 Entrada sialada 0, 10 Vas 0, 20mA                        |  |  |  |  |  |
|              | Analogico                          | 1 Entrada Aislada 010Vcc,                                  | (-1010Vcc),                                                          | 1 Entrada aislada 010 Vcc, 020mA<br>o 420mA                |  |  |  |  |  |
|              |                                    | 020mA o 420mA; 8 bits                                      | 14 bits (opcional)                                                   | 0 42011IA                                                  |  |  |  |  |  |
|              |                                    | 02011A 0 42011A, 0 DIIS                                    | 2 salidas programables bipolares                                     |                                                            |  |  |  |  |  |
|              |                                    |                                                            | 14 bits (opcional)                                                   |                                                            |  |  |  |  |  |
|              |                                    |                                                            | RS-232 o RS-485                                                      |                                                            |  |  |  |  |  |
|              | Interfaz Serial                    | RS-232 o RS-485                                            | RS - 485, aislado, vía EBA o tarjetas                                | <u>-</u>                                                   |  |  |  |  |  |
| Comunicación |                                    | 202 0 1.0                                                  | EBB (accesorio)                                                      |                                                            |  |  |  |  |  |
|              | Protocolos                         | Modbus-RTU, Profibus DP, CANopen y                         | Modbus-RTU, Profibus DP, DeviceNet,                                  |                                                            |  |  |  |  |  |
|              | Fieldbus                           | DeviceNet                                                  | Ethernet/IP, CANopen y Metasys N2                                    | -                                                          |  |  |  |  |  |
|              |                                    |                                                            | Sobrecorriente en la salida                                          |                                                            |  |  |  |  |  |
|              |                                    |                                                            | Subtensión y sobretensión en el link DC                              |                                                            |  |  |  |  |  |
|              |                                    | Sobretemperatura en el Convertidor de Frecuencia           |                                                                      |                                                            |  |  |  |  |  |
|              |                                    | Sobrecarga en el motor ( i x t )                           |                                                                      |                                                            |  |  |  |  |  |
|              |                                    |                                                            | Fallo Externo                                                        |                                                            |  |  |  |  |  |
|              |                                    |                                                            | Fallo Interno                                                        |                                                            |  |  |  |  |  |
|              |                                    | Sohratamparat                                              | Falo de comunicación con la HMI<br>ura en el motor                   |                                                            |  |  |  |  |  |
| Seguridad    | Protecciones                       | Error de Co                                                |                                                                      |                                                            |  |  |  |  |  |
|              |                                    | Ellor do do                                                |                                                                      |                                                            |  |  |  |  |  |
|              |                                    |                                                            | Cortocircuito en la salida<br>Cortocircuito en la salida a tierra    |                                                            |  |  |  |  |  |
|              |                                    |                                                            | Falta de fase en la línea y en el motor                              | -                                                          |  |  |  |  |  |
|              |                                    | -                                                          | Sobrevelocidad en el motor                                           |                                                            |  |  |  |  |  |
|              |                                    |                                                            | Fallo de conexión con                                                |                                                            |  |  |  |  |  |
|              |                                    |                                                            | el motor o con el encoder<br>Sobrecarga en la resistencia de frenado |                                                            |  |  |  |  |  |
|              |                                    | 0. 40.00 (00. 40.4 - 5)                                    | 0. 50.00 (00. 100.05)                                                |                                                            |  |  |  |  |  |
| Condiciones  | Temperatura                        | 040 °C (32104 oF), hasta 50°C (122<br>en la corriente r    |                                                                      | 050 °C (32122 °F) sin reducción en                         |  |  |  |  |  |
| Ambientales  | Humedad                            | en la cornente i                                           | 590% sin condensación                                                | la corriente nominal de salida.                            |  |  |  |  |  |
| Ambientales  | Altitud                            | 0 1000m (3300ft) hasta 4000m (1310                         | 000ft) en la corriente nominal de salida.                            |                                                            |  |  |  |  |  |
|              | Aitituu                            | 01000111 (000011) 11101111 4000111 (1011                   | Arranca / Para                                                       | oorly on a comence nominal de sanda.                       |  |  |  |  |  |
|              | Mando                              |                                                            | Aumenda/Disminuye la velocidad                                       |                                                            |  |  |  |  |  |
|              |                                    | JOG, sentido de giro y                                     | Potenciómetro de variación de velocidad                              |                                                            |  |  |  |  |  |
|              |                                    | Parame                                                     | trización                                                            | Potericionietro de variación de velocidad                  |  |  |  |  |  |
|              |                                    |                                                            | Frecuencia de salida del motor                                       |                                                            |  |  |  |  |  |
|              |                                    | Tensión del circuito intermediario                         | Estado del convertidor                                               | Tensión del circuito intermediario                         |  |  |  |  |  |
| HMI          |                                    | Valor de frecuencia proporcional Temperatura del disipador | Estados de entrada y salida digitales  Velocidad del motor           | Valor proporcional de velocidad  Temperatura del disipador |  |  |  |  |  |
|              | Monitoreo                          | Temperatura dei disipadoi                                  | Corriente de salida al motor (A)                                     | Temperatura dei disipadoi                                  |  |  |  |  |  |
|              | (Lectura)                          |                                                            | Tensión de salida al motor (Vca)                                     |                                                            |  |  |  |  |  |
|              | (Lootara)                          | Señalización de Fallos                                     | Señalización de Fallos                                               |                                                            |  |  |  |  |  |
|              |                                    | Par de l                                                   | Señalización de Fallos con Mensajes<br>a carga                       |                                                            |  |  |  |  |  |
|              |                                    | Estado del convertidor                                     | Estado de la salida a relé                                           | -                                                          |  |  |  |  |  |
|              |                                    | Estado doi conventido                                      | Estado de la entrada de los relés                                    |                                                            |  |  |  |  |  |
|              | Transistor de<br>Frenado           |                                                            | Estándar interno: Tamaño 1, 2 y 3                                    |                                                            |  |  |  |  |  |
|              |                                    | Incorporado en los tamaños 2,3,4                           | Opcional Interno: Tamaños 4, 5, 6 y 7                                | Incorporado en los tamaños 2,3                             |  |  |  |  |  |
|              |                                    | la com - : - d -                                           | Opcional Externo: Tamaños 8, 9 y 10E                                 | Income d -                                                 |  |  |  |  |  |
| Funciones    | Frenado CC<br>Frenado Óptimo       | Incorporado                                                | Incorporado                                                          | Incorporado                                                |  |  |  |  |  |
|              | Frenado Optimo<br>Frenado + 24 Vcc | -                                                          | Incorporado                                                          |                                                            |  |  |  |  |  |
|              | disponible                         | -                                                          | Incorporado                                                          | -                                                          |  |  |  |  |  |
|              | PID                                | Incorporado                                                | Incorporado                                                          | Incorporado                                                |  |  |  |  |  |
|              | 1 10                               | Ποστροιααο                                                 | ιποσιροιαασ                                                          | moorporado                                                 |  |  |  |  |  |

#### **ALEMANIA**

WEG GERMANY GmbH Industriegebiet Türnich 3 Geigerstraße 7 50169 Kerpen Türnich Teléfono: +49 (0)2237/9291-0 Fax: +49 (0)2237/9292-200 info-de@weg.net www.weg.net/de

#### **ARGENTINA**

WEG EQUIPAMIENTOS ELECTRICOS S.A. (Headquarters San Francisco-Cordoba) Sgo. Pampiglione 4849 Parque Industrial San Francisco 2400 - San Francisco Teléfono: +54 (3564) 421484 Fax: +54 (3564) 421459 info-ar@weg.net www.weg.net/ar

#### **AUSTRALIA**

WEG AUSTRALIA PTY. LTD. 3 Dalmore Drive Carribean Park Industrial Estate Scoresby VIC 3179 - Melbourne Teléfono: 61 (3) 9765 4600 Fax: 61 (3) 9753 2088 info-au@weg.net www.weg.net/au

#### **BELGICA**

WEG BENELUX S.A. Rue de l'Industrie 30 D, 1400 Nivelles Teléfono: + 32 (67) 88-8420 Fax: + 32 (67) 84-1748 info-be@weg.net www.weg.net/be

#### CHILE

WEG CHILE S.A. Los Canteros 8600 La Reina - Santiago Teléfono: (56-2) 784 8900 Fax: (56-2) 784 8950 info-cl@weg.net www.weg.net/cl

WEG (NANTONG) ELECTRIC MOTOR MANUFÁCTURING CO., No. 128# - Xinkai South Road, Nantong Economic & Technical Development Zone, Nantong, Jiangsu Province. Teléfono: (86) 0513-85989333 Fax: (86) 0513-85922161

info-cn@weg.net www.weg.net/cn

#### COLOMBIA

WEG COLOMBIA LTDA Calle 46A N82 - 54 Portería II - Bodega 7 - San Cayetano II - Bogotá Teléfono: (57 1) 416 0166 Fax: (57 1) 416 2077 info-co@weg.net www.weg.net/co

## **EMIRATOS ARABES UNIDOS**

WEG MIDDLE EAST FZE JAFZA – JEBEL ALI FREE ZONE Tower 18, 19th Floor, Office LB 18 1905 P.O. Box 262508 - Dubai Teléfono: +971 (4) 8130800 Fax: +971 (4) 8130811 info-ae@weg.net www.weg.net/ae

#### **ESPAÑA**

WEG IBERIA S.L. Avenida de la Industria,25 28823 Coslada - Madrid Teléfono: (34) 916 553 008 Fax: (34) 916 553 058 info-es@weg.net www.weg.net/es

#### EEUU

WEG ELECTRIC CORP. 6655 Sugarloaf Parkway, Duluth, GA 30097 Teléfono: 1-678-249-2000 Fax: 1-770-338-1632 info-us@weg.net www.weg.net/us

#### FRANCIA

WEG FRANCE SAS ZI de Chenes - Le Loup 13 Rue du Morellon – BP 738 38297 Saint Quentin Fallavier Teléfono: +33 (0) 4 74 99 11 35 Fax: +33 (0) 4 74 99 11 44 info-fr@weg.net www.weg.net/fr

#### INDIA

WEG Electric (India) Pvt. Ltd. #38, Ground Floor, 1st Main Road, Lower Palace Orchards, Bangalore - 560 003 Teléfono: +91-80-4128 2007 +91-80-4128 2006

Fax: +91-80-2336 7624 info-in@weg.net www.weg.net/in

#### **ITALIA**

WEG ITALIA S.R.L. V.le Brianza 20 - 20092 - Cinisello Balsamo - Milano Teléfono: (39) 02 6129-3535 Fax: (39) 02 6601-3738 info-it@weg.net www.weg.net/it

#### **JAPON**

WEG ELECTRIC MOTORS JAPAN CO., LTD. Yokohama Sky Building 20F, 2-19-12 Takashima, Nishi-ku, Yokohama City, Kanagawa, Japan 220-001 Teléfono: (81) 45 440 6063 info-jp@weg.net www.weg.net/jp

#### **MEXICO**

WEG MEXICO, S.A. DE C.V. Carretera Jorobas-Tula Km. 3.5, Manzana 5, Lote 1 Fraccionamiento Parque Industrial - Huehuetoca, Estado de México - C.P. 54680 Teléfono: + 52 (55) 5321 4275 Fax: + 52 (55) 5321 4262 info-mx@weg.net www.weg.net/mx

#### **PAISES BAJOS**

WEG NETHERLANDS Sales Office of WEG Benelux S.A. Hanzepoort 23C 7575 DB Oldenzaal Teléfono: +31 (0) 541-571080 Fax: +31 (0) 541-571090 info-nl@weg.net www.weg.net/nl

## **PORTUGAL**

WEG EURO - INDÚSTRIA ELÉCTRICA, S.A. Rua Eng. Frederico Ulrich Apartado 6074 4476-908 - Maia Teléfono: +351 229 477 705 Fax: +351 229 477 792 info-pt@weg.net www.weg.net/pt

#### **RUSIA**

WEG RUSSIA Pochainskaya Str. 17 Nizhny Novgorod 603001 - Russia Teléfono: +7-831-2780425 Fax: +7-831-2780424 info-ru@weg.net www.weg.net/ru

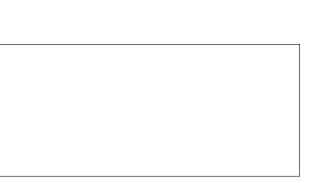
#### SINGAPUR

WEG SINGAPORE PTE LTD 159, Kampong Ampat, #06-02A KA PLACE. Singapore 368328. Teléfono: +65 6858 9081 Fax: +65 6858 1081 info-sg@weg.net www.weg.net/sg

#### **SUECIA**

WEG SCANDINAVIA AB Box 10196 Verkstadgatan 9 434 22 Kungsbacka Teléfono: (46) 300 73400 Fax: (46) 300 70264 info-se@weg.net www.weg.net/se

#### **REINO UNIDO**


WEG ELECTRIC MOTORS (U.K.) LTD. 28/29 Walkers Road Manorside Industrial Estate North Moons Moat - Redditch Worcestershire B98 9HE Teléfono: 44 (0)1527 596-748 Fax: 44 (0)1527 591-133 info-uk@weg.net www.weg.net/uk

**VENEZUELA**WEG INDUSTRIAS VENEZUELA C.A. Avenida 138-A Edificio Torre Banco Occidental de Descuento, Piso 6 Oficina 6-12 Urbanización San Jose de Tarbes Zona Postal 2001 Valencia, Edo. Carabobo Teléfono: (58) 241 8210582 (58) 241 8210799 (58) 241 8211457

Fax: (58) 241 8210966 info-ve@weg.net www.weg.net/ve



WEG Equipamentos Elétricos S.A. División Internacional Av. Prefeito Waldemar Grubba, 3000 89256-900 - Jaraguá do Sul - SC - Brasil Teléfono: 55 (47) 3276-4002 Fax: 55 (47) 3276-4060 www.weg.net



50022101.02/032010 - Los valores demostrados pueden ser cambiados sin aviso previo